• 1
    FAO, How to Feed the World in 2050. in: Expert Meeting on How to feed the World in 2050, FAO Headquarters, Rome, 24–26 June. 2009, 35 pp. Available at {accessed on 17 November 2010}.
  • 2
    USDA-FAS, Table 03: Major Vegetable Oils: World Supply and Distribution (Commodity View). in: Oilseeds: World Markets and Trade Monthly Circular. 2010. Acess at {accessed on 16 November 2010}.
  • 3
    Janssen, M., de Bresser, L., Baijens, T., Tramper, J. et al., Scale-up aspects of photobioreactors: Effects of mixing-induced light/dark cycles. J. Appl. Phycol. 2000, 12, 225237.
  • 4
    Janssen, M., Tramper, J., Mur, L. R., Wijffels, R. H., Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 2003, 81, 193210.
  • 5
    Rapier, R., The man who wrote the book on algal biodiesel. in: The Oil Drum | Discussions about Energy and Our Future. 2007. Acess at {accessed on 17 November 2010}.
  • 6
    Ohlrogge, J., Allen, D., Berguson, B., DellaPenna, D. et al., Driving on Biomass. Science 2009, 324, 10191020.
  • 7
    WRI, Forests, Grasslands and Drylands, Searchable Database. World Resources Institute, 2006. {accessed on 18 November 2010}
  • 8
    Marshall, J., Who needs oil? New Scientist 2007, 195, 2831.
  • 9
    Dyer, J. M., Stymne, S., Green, A. G., Carlsson, A. S., High-value oils from plants. Plant J. 2008, 54, 640655.
  • 10
    Jadhav, A., Katavic, V., Marillia, E. F., Giblin, E. M. et al., Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab. Eng. 2005, 7, 215220.
  • 11
    Badami, R. C., Patil, K. B., Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 1980, 19, 119153.
  • 12
    Smith, C. R., Jr., Occurrence of unusual fatty acids in plants. Prog. Chem. Fats Other Lipids 1971, 11, 137, 139– 177.
  • 13
    Jetter, R., Kunst, L., Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J. 2008, 54, 670683.
  • 14
    Pollard, M., Beisson, F., Li, Y., Ohlrogge, J. B., Building lipid barriers: Biosynthesis of cutin and suberin. Trends Plant Sci. 2008, 13, 236246.
  • 15
    Taube, E., Carnauba wax: Product of a Brazilian palm. Econ. Bot. 1952, 6, 379401.
  • 16
    Carlsson, A. S., Plant oils as feedstock alternatives to petroleum – A short survey of potential oil crop platforms. Biochimie 2009, 91, 665670.
  • 17
    Soldatov, K. I., Chemical mutagenesis in sunflower breeding. in: 7th International Sunflower Conference, International Sunflower Association, Krasnodar, Russia 1976, pp. 352357.
  • 18
    Graef, G., LaVallee, B. J., Tenopir, P., Tat, M. et al., A high-oleic-acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol. J. 2009, 7, 411421.
  • 19
    Pham, A. T., Lee, J. D., Shannon, J. G., Bilyeu, K., Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 2010, 10.
  • 20
    Petros, Y., Carlsson, A. S., Stymne, S., Zeleke, H. et al., Developing high oleic acid in Guizotia abyssinica (L.f.) Cass. by plant breeding. Plant Breed. 2009, 128, 691695.
  • 21
    Bonaventure, G., Salas, J. J., Pollard, M. R., Ohlrogge, J. B., Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 2003, 15, 10201033.
  • 22
    Lu, C. F., Xin, Z. G., Ren, Z. H., Miquel, M., Browse, J., An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 1883718842.
  • 23
    Stahl, U., Carlsson, A. S., Lenman, M., Dahlqvist, A. et al., Cloning and functional characterization of a Phospholipid: Diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 2004, 135, 13241335.
  • 24
    Zhang, M., Fan, J. L., Taylor, D. C., Ohlrogge, J. B., DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and frö development. Plant Cell 2009, 21, 38853901.
  • 25
    Stymne, S., Stobart, A. K., Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem. J. 1984, 223, 305314.
  • 26
    Stymne, S., Stobart, A. K., Glad, G., The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds. Biochim. Biophys. Acta. 1983, 752, 198208.
  • 27
    Stahl, U., Stalberg, K., Stymne, S., Ronne, H., A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS Lett. 2008, 582, 305309.
  • 28
    Stalberg, K., Stahl, U., Stymne, S., Ohlrogge, J., Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC Plant Biol. 2009, 9.
  • 29
    Lands, W. E. M., Stories about acyl chains. BBA-Mol. Cell. Biol. Lipids 2000, 1483, 114.
  • 30
    Graham, I. A., Larson, T., Napier, J. A., Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr. Opin. Biotechnol. 2007, 18, 142147.
  • 31
    Li, F., Marks, D. W., Larock, R. C., Otaigbe, J. U., Fish oil thermosetting polymers: Synthesis, structure, properties and their relationships. Polymer 2000, 41, 79257939.
  • 32
    Ohlrogge, J. B., Design of new plant products: Engineering of fatty acid metabolism. Plant Physiol. 1994, 104, 821826.
  • 33
    Narine, S. S., Yue, J., Kong, X. H., Production of polyols from canola oil and their chemical identification and physical properties. J. Am. Oil Chem. Soc. 2007, 84, 173179.
  • 34
    Cahoon, E. B., Genetic enhancement of soybean oil for industrial uses: Prospects and challenges. University of Missouri-Columbia, Acess at {accessed on 17 November 2010}.
  • 35
    Damude, H. G., Zhang, H. X., Farrall, L., Ripp, K. G. et al., Identification of bifunctional Delta 12/omega 3 fatty acid desaturases for improving the ratio of omega 3 to omega 6 fatty acids in microbes and plants. Proc. Natl. Acad. Sci. USA 2006, 103, 94469451.
  • 36
    Fernandezmartinez, J., Delrio, M., Deharo, A., Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 1993, 69, 115122.
  • 37
    Jones, A., Davies, H. M., Voelker, T. A., Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 1995, 7, 359371.
  • 38
    Liu, Q., Singh, S. P., Green, A., Genetic manipulation of fatty acid composition in cottonseed oil. in: 18th International Symposium on Plant Lipids, Bordeaux, France 2008, p. 38.
  • 39
    Knutzon, D. S., Thompson, G. A., Radke, S. E., Johnson, W. B. et al., Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 1992, 89, 26242628.
  • 40
    Liu, Q., Singh, S. P., Green, A. G., High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol. 2002, 129, 17321743.
  • 41
    Hawkins, D. J., Kridl, J. C., Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J. 1998, 13, 743752.
  • 42
    Bates, P. D., Durrett, T. P., Ohlrogge, J. B., Pollard, M., Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 2009, 150, 5572.
  • 43
    Cahoon, E. B., Cranmer, A. M., Shanklin, J., Ohlrogge, J. B., Δ6 Hexadecenoic acid is synthesized by the activity of a soluble Δ6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. J. Biol. Chem. 1994, 269, 2751927526.
  • 44
    Cahoon, E. B., Shanklin, J., Ohlrogge, J. B., Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc. Natl. Acad. Sci. USA 1992, 89, 1118411188.
  • 45
    Suh, M. C., Schultz, D. J., Ohlrogge, J. B., What limits production of unusual monoenoic fatty acids in transgenic plants? Planta 2002, 215, 584595.
  • 46
    Petrie, J. R., Shrestha, P., Liu, Q., Mansour, M. P. et al., Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. Plant Methods 2010, 6.
  • 47
    Meier, M. A. R., Metathesis with oleochemicals: New approaches for the utilization of plant oils as renewable resources in polymer science. Macromol. Chem. Phys. 2009, 210, 10731079.
  • 48
    Rybak, A., Fokou, P. A., Meier, M. A. R., Metathesis as a versatile tool in oleochemistry. Eur. J. Lipid Sci. Technol. 2008, 110, 797804.
  • 49
    Nguyen, H. T., Mishra, G., Whittle, E., Bevan, S. A. et al., Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol. 2010, 154, 18971904 .
  • 50
    Dehesh, K., How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur. J. Lipid Sci. Technol. 2001, 103, 688697.
  • 51
    Voelker, T. A., Jones, A., Cranmer, A. M., Davies, H. M., Knutzon, D. S., Broad-range and binary-range acyl-acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol. 1997, 114, 669677.
  • 52
    Voelker, T. A., Worrell, A. C., Anderson, L., Bleibaum, J. et al., Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science (Washington) 1992, 257, 7274.
  • 53
    Wiberg, E., Edwards, P., Byrne, J., Stymne, S., Dehesh, K., The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Planta 2000, 212, 3340.
  • 54
    Bafor, M., Jansson, L., Stobart, A. K., Stymne, S., Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Biochem. J. (London) 1990, 272, 3138.
  • 55
    Bafor, M., Stymne, S., Substrate specificities of glycerol acylating enzymes from developing embryos of two Cuphea species. Phytochemistry 1992, 31, 29732976.
  • 56
    Wiberg, E., Tillberg, E., Stymne, S., Substrates of diacylglycerol acyltransferase in microsomes from developing oil seeds. Phytochemistry 1994, 36, 573577.
  • 57
    Larson, T. R., Edgell, T., Byrne, J., Dehesh, K., Graham, I. A., Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J. 2002, 32, 519527.
  • 58
    Eccleston, V. S., Ohlrogge, J. B., Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 1998, 10, 613621.
  • 59
    Poirier, Y., Ventre, G., Caldelari, D., Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol. 1999, 121, 13591366.
  • 60
    Koo, A. J. K., Fulda, M., Browse, J., Ohlrogge, J. B., Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 2005, 44, 620632.
  • 61
    Friedt, W., Luhs, W., Recent developments and perspectives of industrial rapeseed breeding. Fett-Lipid 1998, 100, 219226.
  • 62
    Wang, Y. P., Sonntag, K., Rudloff, E., Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor. Appl. Genet. 2003, 106, 11471155.
  • 63
    Frentzen, M., in: Moore, T. S. (Ed.), Lipid Metabolism in Plants, CRC Press, Boca Raton, FL London 1993, pp. 195230.
  • 64
    Cao, Y. Z., Oo, K. C., Huang, A. H. C., Lysophosphatidate acyltransferase in the microsomes from maturing seeds of meadowfoam (Limnanthes alba). Plant Physiol. 1990, 94, 11991206.
  • 65
    Weier, D., Hanke, C., Eickelkamp, A., Luhs, W. et al., Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L). Fett-Lipid 1997, 99, 160165.
  • 66
    Steiner, B., Kurz, H., Lemmens, M., Buerstmayr, H., Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor. Appl. Genet. 2009, 118, 753764.
  • 67
    Cahoon, E. B., Dietrich, C. R., Meyer, K., Damude, H. G. et al., Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 2006, 67, 11661176.
  • 68
    Thomaeus, S., Carlsson, A. S., Stymne, S., Distribution of fatty acids in polar and neutral lipids during seed development in Arabidopsis thaliana genetically engineered to produce acetylenic, epoxy and hydroxy fatty acids. Plant Sci. 2001, 161, 9971003.
  • 69
    Bao, X. M., Katz, S., Pollard, M., Ohlrogge, J., Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc. Natl. Acad. Sci. USA 2002, 99, 71727177.
  • 70
    Bao, X. M., Thelen, J. J., Bonaventure, G., Ohlrogge, J. B., Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. J. Biol. Chem. 2003, 278, 1284612853.
  • 71
    Burgal, J., Shockey, J., Lu, C. F., Dyer, J. et al., Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol. J. 2008, 6, 819831.
  • 72
    Li, R. Z., Yu, K. S., Hatanaka, T., Hildebrand, D. F., Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol. J. 2010, 8, 184195.
  • 73
    Kazachkov, M., Lindberg, Y. J., Lager, I., Stymne, S. et al., The involvement of Arabidopsis and Lesquerella fendleri lysophosphatidylcholine acyl transferases in acyl editing of phosphatidylcholine (PC) with common and hydroxylated acyl groups. in: 19th International Symposium on Plant Lipid, Cairns, Australia 2010, pp. Poster P-06.
  • 74
    Napier, J. A., Graham, I. A., Tailoring plant lipid composition: Designer oilseeds come of age. Curr. Opin. Plant Biol. 2010, 13, 330337.
  • 75
    Shindou, H., Shimizu, T., Acyl-CoA: Lysophospholipid acyltransferases. J. Biol. Chem. 2009, 284, 15.
  • 76
    van Erp, H., Bates, P. D., Burgal, J., Shockey, J., Browse, J., Castor phospholipid: Diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic arabidopsis. Plant Physiol. 2011, 155, 683693.
  • 77
    Nam, J. W., Kappock, T. J., Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. J. Exp. Bot. 2007, 58, 14211432.
  • 78
    Kumar, R., Wallis, J. G., Skidmore, C., Browse, J., A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J. 2006, 48, 920932.
  • 79
    Nagano, M., Ihara-Ohori, Y., Imai, H., Inada, N. et al., Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b(5). Plant J. 2009, 58, 122134.
  • 80
    Durrett, T. P., McClosky, D. D., Tumaney, A. W., Elzinga, D. A. et al., A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. Proc. Natl. Acad. Sci. USA 2010, 107, 94649469.
  • 81
    Li, W., Kong, X. H., Ruan, M., Ma, F. M. et al., Green waxes, adhesives and lubricants. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2010, 368, 48694890.
  • 82
    Lardizabal, K. D., Metz, J. G., Sakamoto, T., Hutton, W. C. et al., Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol. 2000, 122, 645655.
  • 83
    Yu, C., Cao, Y., Zou, H., Xian, M., Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl. Microbiol. Biotechnol. 2011, 89, 573583.
  • 84
    Zhang, W. J., Qi, Y. H., Zhang, Z. G., A long-term forecast analysis on worldwide land uses. Environ. Monit. Assess. 2006, 119, 609620.
  • 85
    Burney, J. A., Davis, S. J., Lobell, D. B., Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 1205212057.
  • 86
    Alston, J. M., Beddow, J. M., Pardey, P. G., Agricultural research, productivity, and food prices in the long run. Science 2009, 325, 12091210.
  • 87
    USDA, Oilseeds: World Markets and Trade Monthly Circular. Ed. USDA, Foreign Agricultural Service, Washington, DC 2010.
  • 88
    Weselake, R. J., Taylor, D. C., Rahman, M. H., Shah, S. et al., Increasing the flow of carbon into seed oil. Biotechnol. Adv. 2009, 27, 866878.
  • 89
    Vigeolas, H., Huhn, D., Geigenberger, P., Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol. 2011, 155, 14351444.
  • 90
    Ebrahem, K. S., Richardson, D. G., Tetley, R. M., Mehlenbacher, S. A., Oil content, fatty acid composition, and vitamin E concentration of 17 hazelnut varieties, compared to other types of nuts and oil seeds. Hortscience 1993, 28, 101.
  • 91
    Yermanos, D. M., Saleeb, W., Hemstree, S., Huszar, C. K., Oil content and composition of the seed in the world collection of sesame introductions. J. Am. Oil Chem. Soc. 1972, 49, 20223.
  • 92
    Han-zhong, W., Gui-hua, L., Xin-fa, W., Jing, L. et al., Heterosis and breeding of high oil content in rapeseed (Brassica napus L.). in: 16th Australian Research Assembly on Brassicas, Australian Oilseeds Federation, Ballarat, Victoria 2009.
  • 93
    Lardizabal, K., Effertz, R., Levering, C., Mai, J. et al., Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008, 148, 8996.
  • 94
    Angelovici, R., Galili, G., Fernie, A. R., Fait, A., Seed desiccation: A bridge between maturation and germination. Trends Plant. Sci. 2010, 15, 211218.
  • 95
    Clements, J. C., Sweetingham, M. S., Smith, L., Francis, G. et al., Crop improvement in Lupinus mutabilis for Australian agriculture - progress and prospects. in: Lupins for health and wealth. Proceedings of the 12th International Lupin Conference, Fremantle, Western Australia, 14–18 September 2008, International Lupin Association, Canterbury New Zealand 2008, pp. 244250.
  • 96
    Allen, D. K., Ohlrogge, J. B., Shachar-Hill, Y., The role of light in soybean seed filling metabolism. Plant J. 2009, 58, 220234.
  • 97
    Zhang, L. Z., Tan, Q. M., Lee, R., Trethewy, A. et al., Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 2010, 22, 36033620.
  • 98
    Abbadi, J., Gerendás, J., Sattelmacher, B., Effects of nitrogen supply on growth, yield and yield components of safflower and sunflower. Plant Soil 2008, 306, 167180.
  • 99
    Ghasemnezhad, A., Honermeier, B., Yield, oil constituents, and protein content of evening primrose (Oenothera biennis L.) seeds depending on harvest time, harvest method and nitrogen application. Ind. Crop. Prod. 2008, 28, 1723.
  • 100
    Taylor, A. J., Smith, C. J., Wilson, I. B., Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus; L.). Nutr. Cycl. Agroecosyst. 1991, 29, 249260.
  • 101
    FAO, FAOSTAT. Food and Agriculture Organisation of the United Nations, 2010. {accessed on 10 November 2010}
  • 102
    Shen, B., Allen, W. B., Zheng, P. Z., Li, C. J. et al., Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010, 153, 980987.
  • 103
    Baud, S., Mendoza, M. S., To, A., Harscoet, E. et al., WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007, 50, 825838.
  • 104
    Wu, L., Birch, R. G., Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol. J. 2007, 5, 109117.
  • 105
    Banas, A., Debski, H., Banas, W., Heneen, W. K. et al., Lipids in grain tissues of oat (Avena sativa): Differences in content, time of deposition, and fatty acid composition. J. Exp. Bot. 2007, 58, 24632470.
  • 106
    Frey, K. J., Holland, J. B., Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci. 1999, 39, 16361641.
  • 107
    Peterson, D. M., Wood, D. F., Composition and structure of high-oil oat. J. Cereal Sci. 1997, 26, 121128.
  • 108
    Leonova, S., Grimberg, A., Marttila, S., Stymne, S., Carlsson, A. S., Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil. J. Exp. Bot. 2010, 61, 30893099.
  • 109
    Alang, Z. C., Moir, G. F. J., Jones, L. H., Composition, degradation and utilization of endosperm during germination in the oil palm (Elaeis guineensis Jacq.). Ann. Bot. 1988, 61, 261268.
  • 110
    Turesson, H., Marttila, S., Gustavsson, K.-E., Hofvander, P. et al., Characterization of oil and starch accumulation in tubers of Cyperus esculentus var. sativus (Cyperaceae): A novel model system to study oil reserves in nonseed tissues. Am. J. Bot. 2010, 97, 18841893.
  • 111
    Hay, R. K. M., Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197216.
  • 112
    Unkovich, M., Baldock, J., Forbes, M., in: Donald, L. S. (Ed.), Advances in Agronomy, Academic Press, San Diego, CA 2010, pp. 173219.
  • 113
    Ekman, A., Bulow, L., Stymne, S., Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. New Phytol. 2007, 174, 591599.
  • 114
    Andrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A. et al., Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 2010, 8, 277287.
  • 115
    Lersten, N. R., Czlapinski, A. R., Curtis, J. D., Freckmann, R., Horner, H. T., Oil bodies in leaf mesophyll cells of angiosperms: Overview and a selected survey. Am. J. Bot. 2006, 93, 17311739.
  • 116
    Lin, W. L., Oliver, D. J., Role of triacylglycerols in leaves. Plant Sci. 2008, 175, 233237.
  • 117
    Kaup, M. T., Froese, C. D., Thompson, J. E., A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol. 2002, 129, 16161626.
  • 118
    Slocombe, S. P., Cornah, J., Pinfield-Wells, H., Soady, K. et al., Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol. J. 2009, 7, 694703.
  • 119
    Akiyama, M., Sawamura, D., Nomura, Y., Sugawara, M., Shimizu, H., Truncation of CGI-58 protein causes malformation of lamellar granules resulting in ichthyosis in Dorfman-Chanarin syndrome. J. Invest. Dermatol. 2003, 121, 10291034.
  • 120
    Ghosh, A. K., Chauhan, N., Rajakumari, S., Daum, G., Rajasekharan, R., At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 2009, 151, 869881.
  • 121
    Chapman, K., Anderson, R. G. W., Engineering lipids in vegetative tissues of plants. US Patent WO/2010/088426 (2010).
  • 122
    Cernac, A., Benning, C., WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004, 40, 575585.
  • 123
    Lotan, T., Ohto, M., Yee, K. M., West, M. A. L. et al., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 1998, 93, 11951205.
  • 124
    Luerssen, K., Kirik, V., Herrmann, P., Misera, S., FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998, 15, 755764.
  • 125
    Nambara, E., Keith, K., McCourt, P., Naito, S., A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 1995, 121, 629636.
  • 126
    Stone, S. L., Kwong, L. W., Yee, K. M., Pelletier, J. et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 2001, 98, 1180611811.
  • 127
    Mendoza, M. S., Dubreucq, B., Miquel, M., Caboche, M., Lepiniec, L., LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 2005, 579, 46664670.
  • 128
    Mu, J. Y., Tan, H. L., Zheng, Q., Fu, F. Y. et al., LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol. 2008, 148, 10421054.
  • 129
    Baud, S., Wuilleme, S., To, A., Rochat, C., Lepiniec, L., Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009, 60, 933947.
  • 130
    Froissard, M., D'Andrea, S., Boulard, C., Chardot, T., Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res. 2009, 9, 428438.
  • 131
    Arend, M., Fromm, J., Ultrastructural changes in cambial cell derivatives during xylem differentiation in poplar. Plant Biol. 2003, 5, 255264.
  • 132
    Robards, A. W., Kidwai, P., A Comparative Study of the Ultrastructure of Resting and Active Cambium of Salix fragilis, L. Planta. 1969, 84, 239249.
  • 133
    Sennerbyforsse, L., Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology. Physiol. Plant. 1986, 67, 529537.
  • 134
    Wang, G., Lin, Q. Q., Xu, Y., Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems. Phytochemistry 2007, 68, 21122117.
  • 135
    Hanley, S., Mallott, M., Karp, A., Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet. Genomes 2006, 3, 3548.
  • 136
    Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J. et al., The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 15961604.
  • 137
    Vahala, T., Stabel, P., Eriksson, T., Genetic transformation of willows (Salix; spp.) by Agrobacterium tumefaciens. Plant Cell Reports 1989, 8, 5558.
  • 138
    Yang, Z. L., Ohlrogge, J. B., Turnover of fatty acids during Natural Senescence of Arabidopsis, Brachypodium, and Switchgrass and in Arabidopsis beta-Oxidation Mutants. Plant Physiol. 2009, 150, 19811989.
  • 139
    Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z. et al., Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010, 463, 559562.
  • 140
    OECD, OECD-FAO Agricultural Outlook 2010–2019, OECD Publishing, Paris 2010.