• 1
    Gorter, E. F., Grendel, F., On biomolecular layers of lipoids on chromacytes of blood. J. Exp. Med. 1925, 41, 439443.
  • 2
    Bagatolli, L. A., Ipsen, J. H., Simonsen, A. C., Mouritsen, O. G., An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes. Prog. Lipid Res. 2010, 49, 378389.
  • 3
    Sackmann, E., in: Lipowsky, R., Sackmann, E. (Eds.), Handbook of Biological Physics, Structure and Dynamics of Membranes, Vol 1A, Elsevier, Amsterdam, Holland 1995, pp. 163.
  • 4
    Singer, S. J., Nicolson, G. L., The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720731.
  • 5
    Israelachvili, J. N., Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 1977, 469, 221225.
  • 6
    Mouritsen, O. G., Andersen, O. S., (Eds.), In search of a new biomembrane model. Biol. Skr. Dan. Vid. Selsk. 1998, 49, 1214.
  • 7
    Quinn, P. J. (Ed.), Membrane Dynamics and Domains. Subcellular Biochemistry, Vol.: 37 Kluwer Academic/Plenum Publishers, New York, USA 2004.
  • 8
    Mouritsen, O. G., Life – As a Matter of fat. The Emerging Science of Lipidomics, Springer, Heidelberg, Germany 2005.
  • 9
    Fidorra, M., Garcia, A., Ipsen, J. H., Hartel, S., Bagatolli, L. A., Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach. Biochim. Biophys. Acta 2009, 1788, 21422149.
  • 10
    Veatch, S. L., Keller, S. L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 2003, 85, 30743083.
  • 11
    Jensen, M. H., Morris, E. J., Simonsen, A. C., Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir 2007, 23, 81358141.
  • 12
    Veatch, S. L., Polozov, I. V., Gawrisch, K., Keller, S. L., Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 2004, 86, 29102922.
  • 13
    Simons, K., Ikonen, E., Functional rafts in cell membranes. Nature 1997, 387, 569572.
  • 14
    Lingwood, D., Simons, K., Lipid rafts as a membrane-organizing principle. Science 2010, 327, 4650.
  • 15
    Mayor, S., Rao, M., Rafts: Scale-dependent, active lipid organization at the cell surface. Traffic 2004, 5, 231240.
  • 16
    Jacobson, K., Mouritsen, O. G., Anderson, G. W., Lipid rafts: At a crossroad between cell biology and physics. Nat. Cell Biol. 2007, 9, 714.
  • 17
    Kusumi, A., Suzuki, K., Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta 2005, 1746, 234251.
  • 18
    Spener, F., Lagarde, M., Géloën, A., Record, M., What is lipidomics? Eur. J. Lipid Sci. Technol. 2002, 105, 481482.
  • 19
    Mouritsen, O. G., Andersen, H. K., Andersen, J. S., Davidsen, J. et al., in: Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R. (Eds.), Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies, Wiley-Verlag Helvetica Chemica Acta, Zürich, Switzerland 2000, 3349.
  • 20
    Andresen, T. L., Jensen, S. S., Jørgensen, K., Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Prog. Lipid Res. 2005, 44, 6897.
  • 21
    Hyde, S., Blum, Z., Landh, T., Lidin, S., et al., The Language of Shape. The Role of Curvature in Condensed Matter: Physics, Chemistry, and Biology, Elsevier, Holland 1996.
  • 22
    McMahon, H. T., Gallop, J. L., Membrane curvature and mechanisms of dynamic cell membrane remodeling. Nature 2005, 438, 590596.
  • 23
    Zimmerberg, J., Kozlov, M. M., How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 2006, 7, 919.
  • 24
    Marsh, D., Elastic curvature constants of lipid monolayers and bilayers. Chem. Phys. Lipids 2006, 144, 146159.
  • 25
    Kühnle, J., Shillcock, J., Mouritsen, O. G., Weiss, M., A modeling approach to the self-assembly of the Golgi apparatus. Biophys. J. 2010, 98, 28392847.
  • 26
    Bloom, M., Evans, E., Mouritsen, O. G., Physical properties of the fluid-bilayer component of cell membranes: A perspective. Q. Rev. Biophys. 1991, 24, 293397.
  • 27
    Merz, K. M., Roux, B. (Eds.), Biological Membranes. A Molecular Perspective from Computation and Experiment, Birkhäuser, Boston, USA 1996.
  • 28
    Nag, K. (Ed.), Membranous Interfaces, Wiley, New Jersey, USA 2008.
  • 29
    Heimburg, T., Thermal Biophysics of Membranes, Wiley-VCH, Berlin, Germany 2007.
  • 30
    Heimburg, T. (Ed.), Themed issue: Membrane biophysics. Soft Mater. 2009, 5, 31293364.
  • 31
    Mouritsen, O. G., in: Simons, K. (Ed.), The Biology Lipids, Cold Spring Harb. Perspect. Biol., Cold Spring Harbor Press, USA 2011, pp. 115. DOI: 10.1101/cshperspect.a004622.
  • 32
    Rilfors, L., Lindblom, G., Regulation of lipid composition in biological membranes − biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf., B: Biointerfaces 2002, 26, 112124.
  • 33
    Mouritsen, O. G., Jakobsen, A. F., in: Rasmussen, S., Bedeau, M. A., Chen, L., Deamer, D., Krakauer, D. C., Packard, N., Stadle, D. P. (Eds.), Protocells: Bridging Nonliving and Living Matter, MIT Press, Boston, USA 2008, pp. 385406.
  • 34
    Jönsson, B., Lindman, B., Holmberg, K., Kronberg, B., Surfactants and Polymers in Aqueous Solution, 2nd Edn. John Wiley and Sons, New York, USA 2001.
  • 35
    Seddon, J. M., Templer, R. H., in: Lipowsky, R., Sackmann, E. (Eds.), Handbook of Biological Physics, Structure and Dynamics of Membranes, Vol 1A, Elsevier, Amsterdam, Holland 1995, pp. 97160.
  • 36
    Ninham, B., Nostro, P. Lo, in: Colloid, Nano Sciences, and Biology, Cambridge University Press, Cambridge, UK 2010.
  • 37
    Israelachvili, J. N., Intermolecular: And Surface Forces, 2nd Edn. Academic Press, New York, USA 1992.
  • 38
    Jain, M. K., van Echteld, C. J. A., Ramirez, F., de Gier, J., et al., Association of lysophosphatidylcholine with fatty acids in aqueous phase to form bilayers. Nature 1980, 284, 486487.
  • 39
    Mills, K., Needham, D., Lysolipid incorporation in dipalmitoyl-phosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim. Biophys. Acta 2005, 1716, 7796.
  • 40
    Jain, M. K., de Haas, G. H., Structure of 1-acyl lysophosphatidylcholine and fatty acid complex in bilayers. Biochim. Biophys. Acta 1981, 642, 203211.
  • 41
    Cevc, G., Phospholipids Handbook, Marcel Dekker, New York, USA 1993.
  • 42
    Cantor, R. S., The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 1999, 101, 4556.
  • 43
    Cantor, R. S., Lateral pressures in cell membranes: A mechanism for modulation of protein function. J. Phys. Chem. 1997, 101, 17231725.
  • 44
    Cantor, R. S., The lateral pressure profile in membranes: A physical mechanism of general anesthesia. Biochemistry 1997, 36, 23392344.
  • 45
    Marsh, D., Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 2007, 93, 38843899.
  • 46
    Mouritsen, O. G., Physical effects of poly-unsaturated fatty acids on membranes. Biol. Skr. Dan. Vid. Selsk. 2007, 56, 6974.
  • 47
    Carillo-Trip, M., Feller, S. E., Evidence for a mechanism by which ω-3 poly-unsaturated lipids may affect membrane protein function. Biochemistry 2005, 44, 1016410169.
  • 48
    Armstrong, W. T., Brzustowicz, M. R., Wassall, S. R., Jenski, L. J., Stillwell, W., Rapid flip-flop in poly-unsaturated (docosahexaenoate) phospholipid membranes. Arch. Biochem. Biophys. 2003, 414, 7482.
  • 49
    Eldho, N. V., Feller, S. E., Tristram-Nagle, S., Polozov, I. V., Gawrisch, K., Poly-unsaturated docosahexaenoic vs. docosapentaenoic acid-differences in lipid matrix properties from the loss of one double bond. JACS 2003, 125, 64096421.
  • 50
    Ollila, S., Hyvönen, M. T., Vattulainen, I., Poly-unsaturation in lipid membranes: Dynamic properties and lateral pressure profiles. J. Phys. Chem. 2007, 111, 31393150.
  • 51
    Shimshick, E. J., McConnell, H. M., Lateral phase separation in phospholipid membranes. Biochemistry 1973, 12, 23512360.
  • 52
    Mouritsen, O. G., Studies on the lack of cooperativity in the melting of lipid bilayers. Biochim. Biophys. Acta 1983, 731, 217221.
  • 53
    Mouritsen, O. G., Jørgensen, K., Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 1994, 73, 326.
  • 54
    Bergelson, L., (Ed.), Domain organization in biological membranes. Mol. Membr. Biol. 1995, 12, 1162.
  • 55
    Mouritsen, O. G., Zuckermann, M. J., What's so special about cholesterol? Lipids 2004, 39, 11011113.
  • 56
    Ipsen, J. H., Karlström, G., Wennerström, H., Mouritsen, O. G., Zuckermann, M. J., Phase equilibria in the lecithin-cholesterol system. Biochim. Biophys. Acta 1987, 905, 162172.
  • 57
    Mouritsen, O. G., The liquid-ordered state comes of age. Biochim. Biophys. Acta 2010, 1798, 12861288.
  • 58
    Goñi, F. M., Alonso, A., Bagatolli, L. A., Brown, R. E., et al., Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta 2008, 1781, 665684.
  • 59
    Pike, L. J., The challenge of lipid rafts. J. Lipid Res. 2009, 50, 323328.
  • 60
    Engelman, D. M., Membranes are more mosaic than fluid. Nature 2005, 438, 578580.
  • 61
    van Meer, G., Voelker, D. R., Feigenson, G. W., Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112124.
  • 62
    Baumgart, T., Hess, S. T., Webb, W. W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003, 425, 821824.
  • 63
    Bagatolli, L. A., To see or not to see: Lateral organization of biological membranes and fluorescence microscopy. Biochim. Biophys. Acta 2006, 1758, 15411556.
  • 64
    Bagatolli, L. A. (Ed), Microscopy imaging of membrane domains. Biochim. Biophys. Acta 2010, 1798, 12851456.
  • 65
    Kurzchalia, T. V., Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 32723277.
  • 66
    Semrau, S., Idema, T., Schmidt, T., Storm, C., Membrane-mediated interactions measured using membrane domains. Biophys. J. 2009, 96, 49064915.
  • 67
    Jespersen, H., Andersen, J. H., Ditzel, H., Mouritsen, O. G., Lipids, curvature stress, and the action of lipid prodrugs: Free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochemie 2011, DOI: 10.1016/j.biochi.2011.07.029.
  • 68
    Weltzien, H. U., Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 1979, 559, 259287.
  • 69
    Needham, D., Zhelev, D. V., Lysolipid exchange with lipid vesicle membranes. Annu. Biomed. Eng. 1995, 23, 287298.
  • 70
    Langner, M., Hui, S. W., Effect of free fatty acids on the permeability of 1,2-dimyristoyl-sn-glycero-phosphocholine bilayer at the main phase transition. Biochim. Biophys. Acta 2000, 1463, 439447.
  • 71
    Høyrup, P., Davidsen, J., Jørgensen, K., Lipid membrane partitioning of lysolipids and fatty acids: Effect of membrane phase structure and detergent chain length. J. Phys. Chem. 2001, 105, 26492657.
  • 72
    Davidsen, J., Mouritsen, O. G., Jørgensen, K., Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes. Biochim. Biophys. Acta 2002, 1564, 256262.
  • 73
    Rasmussen, N., Andersen, J. H., Jespersen, H., Mouritsen, O. G., Ditzel, H. J., Effects of free fatty acids and lysolipids on cellular uptake of doxorubicin in human breast cancer cell lines. Anti-Cancer Drugs 2010, 21, 674677.
  • 74
    Tamm, L.K. (Ed.), Protein−Lipid Interactions – From Membrane Domains to Cellular Networks, Wiley-VCH, Weinheim, Switzerland 2005.
  • 75
    Perez-Gil, J. (Ed.), Protein modulation of membrane structure. Biochim. Biophys. Acta 2008, 1778, 15271695.
  • 76
    Sackmann, E., in: Chapman, D. (Ed.), Biological Membranes, Academic Press, London 1984, pp. 105143.
  • 77
    Mouritsen, O. G., Bloom, M., Mattress model of lipid−protein interactions in membranes. Biophys. J. 1984, 46, 141153.
  • 78
    Jensen, M. Ø., Mouritsen, O. G., Lipids do influence protein function – the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 2004, 1666, 205226.
  • 79
    Andersen, O. S., Koeppe, R.E., II, Bilayer thickness and membrane protein function: An energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 107130.
  • 80
    Dumas, F., Sperotto, M. M., Lebrun, M. C., Tocanne, J. F., Mouritsen, O. G., Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophys. J. 1997, 73, 19401953.
  • 81
    Dumas, F., Lebrun, M. C., Tocanne, J.-F., Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett. 1999, 458, 271277.
  • 82
    Risbo, J., Sperotto, M. M., Mouritsen, O. G., Theory of phase equilibria and critical mixing points in binary lipid bilayers. J. Chem. Phys. 1995, 103, 36433656.
  • 83
    Honerkamp-Smith, A. R., Cicuta, P., Collins, M. D., Veatch, S. L., et al., Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 2008, 95, 236246.
  • 84
    Veatch, S. L., Soubias, O., Keller, S. L., Gawrisch, K., Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. U. S. A. 2007, 104, 1765017655.
  • 85
    Gil, T., Sabra, M. C., Ipsen, J. H., Mouritsen, O. G., Wetting and capillary condensation as means of protein organization in membranes. Biophys. J. 1997, 73, 17281741.
  • 86
    Gil, T., Ipsen, J. H., Mouritsen, O. G., Sabra, M. C., et al., Theoretical analysis of protein organization in lipid membranes. Biochim. Biophys. Acta 1998, 1376, 245266.
  • 87
    Cullis, P. R., de Kruijff, B., Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 1979, 559, 399420.
  • 88
    Tuominen, E. K. J., Wallace, C. J. A., Kinnunen, P. K. J., Phospholipid−cytochrome c interaction. Evidence for the extended lipid anchorage. J. Biol. Chem. 2002, 277, 88228826.
  • 89
    Fan, J., Sammalkorpi, M., Haataja, M., Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. Phys. Rev. E. 2010, 81, 011908.
  • 90
    Schmittmann, B., Zia, R. K. P., in: Domb, C., Lebowitz, J. L. (Eds.), Phase Transition and Critical Phenomena, Vol. 17, Academic Press, London, UK 1995, 1220.
  • 91
    Sabra, M. C., Mouritsen, O. G., Steady-state compartmentalization of lipid membranes by active proteins. Biophys. J. 1998, 74, 745752.
  • 92
    Manneville, J.-B., Bassereau, P., Levy, D., Prost, J., Activity of transmembrane proteins induces modifications of shape fluctuations of lipid membranes. Phys. Rev. Lett. 1999, 82, 43564359.
  • 93
    Manneville, J. B., Bassereau, P., Ramaswamy, S., Prost, J., Active membrane fluctuations studied by micropipet aspiration. Phys. Rev. E. 2001, 64, 21908.
  • 94
    Høyrup, P., Jørgensen, K., Mouritsen, O. G., Phospholipase A2 − an enzyme that is sensitive to the physics of its substrate. Europhys. Lett. 2002, 57, 464470.
  • 95
    Chen, H.-Y., Internal states of active inclusions and the dynamics of an active membrane. Phys. Rev. Lett. 2004, 92, 168101.
  • 96
    Girard, P., Prost, J., Bassereau, P., Passive or active fluctuations in membranes containing proteins. Phys. Rev. Lett. 2005, 94, 088102.
  • 97
    Turner, M. S., Sens, P., Socci, N. D., Nonequilibrium raftlike membrane domains under continuous recycling. Phys. Rev. Lett. 2005, 95, 168301.
  • 98
    Lomholt, M., Fluctuation spectrum of quasispherical membranes with force-dipole activity. Phys. Rev. E 2006, 73, 061914.
  • 99
    Giahi, A., El Alaoui Faris, M. D., Bassereau, P., Salditt, T., Active membranes studied by X-ray scattering. Eur. Phys. J. E 2007, 23, 431437.
  • 100
    El, Alaoui., Faris, M. D., Lacoste, D., Pécréaux, J., et al., Membrane tension lowering induced by protein activity. Phys. Rev. Lett. 2009, 102, 038102-1-4.
  • 101
    Sabra, M. C., Gilhøj, H., Mouritsen, O. G., Steady-state organization of binary mixtures by active impurities. Phys. Rev. E 1998, 58, 35473551.
  • 102
    Thormann, E., Dreyer, J. K., Simonsen, A. C., Hansen, P. L., et al., Dynamic strength of the interaction between lung surfactant protein D (SP-D) and saccharide ligands. Biochemistry 2007, 46, 1223112237.
  • 103
    Sparr, E., Wennerström, H., Responding phospholipid membranes–interplay between hydration and permeability. Biophys. J. 2001, 81, 10141028.
  • 104
    Roux, A., Kostera, G., Lenz, M., Sorre, B., et al., Membrane curvature controls dynamin polymerization. Proc. Natl. Acad. U. S. A. 2010, 107, 41414146.
  • 105
    Davies, S. M. A., Epand, R. M., Kraayenhof, R., Cornell, R. B., Regulation of CTP: Phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: An important role for stored curvature strain energy. Biochemistry 2001, 40, 1052210531.
  • 106
    Bhatiaa, V. K., Hatzakis, N. S., Stamou, D., A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin. Cell Dev. Biol. 2010, 21, 381390.
  • 107
    Madsen, K. L., Bhatia, V. K., Gether, U., Stamou, D., BAR domains, amphipathic helices, and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett. 2010, 584, 18481855.
  • 108
    Drin, G., Antonny, B., Amphipathic helices and membrane curvature. FEBS Lett. 2009, 584, 18401847.
  • 109
    Holopainen, J. M., Angelova, M. I., Kinnunen, P. K. J., Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 2000, 78, 830838.
  • 110
    Mouritsen, O. G., Andresen, T. L., Halperin, A., Hansen, P. L., et al., Activation of interfacial enzymes at membrane surfaces. J. Phys.: Condens. Matter 2006, 18, S1293S1304.
  • 111
    Jensen, B. U., Simonsen, A. C., Shape relaxations in a fluid supported membrane during hydrolysis by phospholipase A(2). Biochim. Biophys. Acta 2005, 1715, 15.
  • 112
    Simonsen, A. C., Activation of phospholipase A2 by ternary model membranes. Biophys. J. 2008, 94, 966975.
  • 113
    Halperin, A., Mouritsen, O. G., Role of lipid protrusions in the function of interfacial enzymes. Eur. J. Biophys. Biophys. Lett. 2005, 34, 967971.
  • 114
    Høyrup, P., Callisen, T. H., Jensen, M. Ø., Halperin, A., Mouritsen, O. G., Lipid protrusions, membrane softness, and enzymatic activity. Phys. Chem. Chem.Phys. 2004, 6, 16081615.
  • 115
    Jørgensen, K., Vermehren, C., Mouritsen, O. G., Enhancement of phospholipase A2 catalyzed degradation of polymer grafted PEG-liposomes: Effects of lipopolymer concentration and chain length. Pharm. Res. 1999, 16, 14931495.
  • 116
    Jørgensen, K., Davidsen, J., Mouritsen, O. G., Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS Lett. 2002, 531, 2327.
  • 117
    Davidsen, J., Jørgensen, K., Andresen, T. L., Mouritsen, O. G., Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localized liposomal drug release and absorption in diseased tissue. Biochim. Biophys. Acta 2003, 1609, 95101.
  • 118
    Pedersen, P. J., Christensen, M. S., Ruysschaert, T., Linderoth, L., et al., Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs. J. Med. Chem. 2009, 52, 34083415.
  • 119
    Pedersen, P. J., Adolph, S. K., Subramanian, A. K., Arouri, A., et al., Liposomal formulation of retinoids designed for enzyme triggered release. J. Med. Chem. 2010, 53, 37823792.
  • 120
    Arouri, A., Mouritsen, O. G., Anticancer double lipid prodrugs: Liposomal preparation and characterization. J. Liposome Res. (online March 26, DOI: 10.3109/08982104.2011.563365. 2011).
  • 121
    Lasic, D. D., Papahadjopoulos, D. (Ed.), Medical Applications of Liposomes, Elsevier, Amsterdam, Holland 1998.
  • 122
    Barenholz, Y., Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci. 2001, 6, 6677.
  • 123
    Needham, D., Anyarambhatla, G., Kong, G., Dewhirst, M. W., A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000, 60, 11971201.
  • 124
    Ponce, A. M., Vujaskovic, Z., Yuan, F., Needham, D., Dewhirst, M. W., Hyperthermia mediated liposomal drug delivery. Int. J. Hyperth. 2006, 22, 205213.
  • 125
    Graff, J. R., Konicek, B. W., Deddens, J. A., Chedid, M., et al., Expression of group IIA secretory phospholipase A2 increases with prostate tumor grade. Clin. Cancer Res. 2001, 7, 38573861.
  • 126
    Ying, Z., Tojo, H., Komatsubara, T., Nakagawa, M., et al., Enhanced expression of group II phospholipase A2 in human hepatocellular carcinoma. Biochim. Biophys. Acta 1994, 1226, 201205.
  • 127
    Abe, T., Sakamoto, K., Kamohara, H., Hirano, Y., et al., Group II phospholipase A2 is increased in peritoneal and pleural effusions in patients with various types of cancer. Int. J. Cancer 1997, 74, 245250.
  • 128
    Andresen, T. L., Davidsen, J., Begtrup, M., Mouritsen, O. G., Jørgensen, K., Enzymatic release of anti-tumor ether lipids by specific phospholipase A2 activation of novel liposome-forming prodrugs. J. Med. Chem. 2004, 47, 16941703.
  • 129
    Shillcock, J. C., Insight or illusion? Seeing inside the cell with mesoscopic simulations. HFSP J. 2008, 2, 16.
  • 130
    Bernardino de la Serna, J., Perez-Gil, J., Simonsen, A. C., Bagatolli, L. A., Cholesterol rules: Direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 2004, 279, 4071540722.