• 1
    Fedorak, R. N., Understanding why probiotic therapies can be effective in treating IBD. J. Clin. Gastroenterol. 2008, 42, S111S115.
  • 2
    Bassaganya-Riera, J., Hontecillas, R., CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin. Nutr. 2006, 25, 454465.
  • 3
    Calder, P. C., Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 2007, 77, 327335.
  • 4
    Tjonneland, A., Overvad, K., Bergmann, M. M., Nagel, G. et al., Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: A nested case–control study within a European prospective cohort study. Gut 2009, 58, 16061611.
  • 5
    Bomba, A., Nemcova, R., Gancarcikova, S., Herich, R. et al., The influence of omega-3 polyunsaturated fatty acids (omega-3 pufa) on lactobacilli adhesion to the intestinal mucosa and on immunity in gnotobiotic piglets. Berl. Munch. Tierarztl. Wochenschr. 2003, 116, 312316.
  • 6
    Ringo, E., Bendiksen, H. R., Gausen, S. J., Sundsfjord, A., Olsen, R. E., The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). J. Appl. Microbiol. 1998, 85, 855864.
  • 7
    Chen, C. C., Louie, S., Shi, H. N., Walker, W. A., Preinoculation with the probiotic Lactobacillus acidophilus early in life effectively inhibits murine Citrobacter rodentium colitis. Pediatr. Res. 2005, 58, 11851191.
  • 8
    Ma, D., Forsythe, P., Bienenstock, J., Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect. Immun. 2004, 72, 53085314.
  • 9
    Miyauchi, E., Morita, H., Tanabe, S., Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J. Dairy Sci. 2009, 92, 24002408.
  • 10
    So, J. S., Lee, C. G., Kwon, H. K., Yi, H. J. et al., Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis. Mol. Immunol. 2008, 46, 172180.
  • 11
    Knoch, B., Barnett, M. P., McNabb, W. C., Zhu, S. et al., Dietary arachidonic acid-mediated effects on colon inflammation using transcriptome analysis. Mol. Nutr. Food Res. 2010, 54, S62S74.
  • 12
    Ramakers, J. D., Mensink, R. P., Schaart, G., Plat, J., Arachidonic acid but not eicosapentaenoic acid (EPA) and oleic acid activates NF-kappaB and elevates ICAM-1 expression in Caco-2 cells. Lipids 2007, 42, 687698.
  • 13
    Storey, A., McArdle, F., Friedmann, P. S., Jackson, M. J., Rhodes, L. E., Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts. J. Invest. Dermatol. 2005, 124, 248255.
  • 14
    Kaji, R., Kiyoshima-Shibata, J., Nagaoka, M., Nanno, M., Shida, K., Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J. Immunol. 2010, 184, 35053513.
  • 15
    Kumar Pachathundikandi, S., Brandt, S., Madassery, J., Backert, S., Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cagPAI-dependent signalling leading to the secretion of IL-8 and TNF-alpha. PLoS ONE 2011, 6, e19614.
  • 16
    Rachmilewitz, D., Katakura, K., Karmeli, F., Hayashi, T. et al., Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004, 126, 520528.
  • 17
    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118, 229241.
  • 18
    Habermann, N., Christian, B., Luckas, B., Pool-Zobel, B. L. et al., Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. Biofactors 2009, 35, 460467.
  • 19
    Clamp, A. G., Ladha, S., Clark, D. C., Grimble, R. F., Lund, E. K., The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane. Lipids 1997, 32, 179184.
  • 20
    Hughes, D. A., Pinder, A. C., Piper, Z., Johnson, I. T. et al., Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am. J. Clin. Nutr. 1996, 63, 267272.
  • 21
    Zapata-Gonzalez, F., Rueda, F., Petriz, J., Domingo, P. et al., Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma): RXR heterodimers: Comparison with other polyunsaturated fatty acids. J. Leukoc. Biol. 2008, 84, 11721182.
  • 22
    Kim, H. J., Ham, S. A., Kim, S. U., Hwang, J. Y. et al., Transforming growth factor-beta 1 is a molecular target for the peroxisome proliferator-activated receptor delta. Circ. Res. 2008, 102, 193200.
  • 23
    DePaolo, R. W., Rollins, B. J., Kuziel, W., Karpus, W. J., CC chemokine ligand 2 and its receptor regulate mucosal production of IL-12 and TGF-beta in high dose oral tolerance. J. Immunol. 2003, 171, 35603567.
  • 24
    Ishikawa, H., Tanaka, K., Maeda, Y., Aiba, Y. et al., Effect of intestinal microbiota on the induction of regulatory CD25+ CD4+ T cells. Clin. Exp. Immunol. 2008, 153, 127135.
  • 25
    Mowat, A. M., Basic mechanisms and clinical implications of oral tolerance. Curr. Opin. Gastroenterol. 1999, 15, 546556.
  • 26
    Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M. A. et al., Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 2000, 47, 7987.
  • 27
    Granato, D., Bergonzelli, G. E., Pridmore, R. D., Marvin, L. et al., Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 2004, 72, 21602169.
  • 28
    Saunders, D. R., Sillery, J. K., Absorption of triglyceride by human small intestine: Dose–response relationships. Am. J. Clin. Nutr. 1988, 48, 988991.
  • 29
    Arvans, D. L., Vavricka, S. R., Ren, H., Musch, M. W. et al., Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G696G704.
  • 30
    Furrie, E., Macfarlane, S., Thomson, G., Macfarlane, G. T., Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 2005, 115, 565574.
  • 31
    Gackowska, L., Michalkiewicz, J., Krotkiewski, M., Helmin-Basa, A. et al., Combined effect of different lactic acid bacteria strains on the mode of cytokines pattern expression in human peripheral blood mononuclear cells. J. Physiol. Pharmacol. 2006, 57, 1321.
  • 32
    Saubermann, L. J., Nakajima, A., Wada, K., Zhao, S. et al., Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm. Bowel Dis. 2002, 8, 330339.
  • 33
    Sijben, J. W., Schrama, J. W., Parmentier, H. K., van der Poel, J. J., Klasing, K. C., Effects of dietary polyunsaturated fatty acids on in vivo splenic cytokine mRNA expression in layer chicks immunized with Salmonella typhimurium lipopolysaccharide. Poult. Sci. 2001, 80, 11641170.
  • 34
    Tobita, K., Yanaka, H., Otani, H., Heat-treated Lactobacillus crispatus KT strains reduce allergic symptoms in mice. J. Agric. Food Chem. 2009, 57, 55865590.
  • 35
    Wallace, T. D., Bradley, S., Buckley, N. D., Green-Johnson, J. M., Interactions of lactic acid bacteria with human intestinal epithelial cells: Effects on cytokine production. J. Food Prot. 2003, 66, 466472.
  • 36
    Philpott, D. J., Girardin, S. E., The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 2004, 41, 10991108.
  • 37
    Zeuthen, L. H., Fink, L. N., Metzdorff, S. B., Kristensen, M. B. et al., Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli. BMC Immunol. 2010, 11, 2.
  • 38
    Laparra, J. M., Sanz, Y., Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 2009, 49, 695701.
  • 39
    Bocker, U., Yezerskyy, O., Feick, P., Manigold, T. et al., Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int. J. Colorectal Dis. 2003, 18, 2532.
  • 40
    von der Weid, T., Bulliard, C., Schiffrin, E. J., Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin. Diagn. Lab. Immunol. 2001, 8, 695701.
  • 41
    Vizoso Pinto, M. G., Schuster, T., Briviba, K., Watzl, B. et al., Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J. Food Prot. 2007, 70, 125134.
  • 42
    Becker, C., Fantini, M. C., Neurath, M. F., TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev. 2006, 17, 97106.
  • 43
    Ruemmele, F. M., Garnier-Lengline, H., Transforming growth factor and intestinal inflammation: The role of nutrition. Nestle Nutr. Inst. Workshop Ser. 2013, 77, 9198.
  • 44
    Marion-Letellier, R., Butler, M., Dechelotte, P., Playford, R. J., Ghosh, S., Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor gamma ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells – potential for dietary modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation. Am. J. Clin. Nutr. 2008, 87, 939948.