• Polypyrrole;
  • Conducting Polymer;
  • Composite Films;
  • Nanotubes


We report the electropolymerization and characterization of polypyrrole films doped with poly(m-aminobenzene sulfonic acid (PABS) functionalized single-walled nanotubes (SWNT) (PPy/SWNT-PABS). The negatively charged water-soluble SWNT-PABS served as anionic dopant during the electropolymerization to synthesize PPy/SWNT-PABS composite films. The synthetic, morphological and electrical properties of PPy/SWNT-PABS films and chloride doped polypyrrole (PPy/Cl) films were compared. Characterization was performed by cyclic voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy. SEM and AFM images revealed that the incorporation of SWNT-PABS significantly altered the morphology of the PPy. Cyclic voltammetry showed improved electrochemical properties of PPy/SWNT-PABS films as compared to PPy/Cl films. Raman Spectroscopy confirmed the presence of SWNT-PABS within composite films. Field effect transistor (FET) and electrical characterization studies show that the incorporation of the SWNT-PABS increased the electronic performance of PPy/SWNT-PABS films when compared to PPy/Cl films. Finally, we fabricated PPy/SWNT-PABS nanotubes which may lead to potential applications to sensors and other electronic devices.