Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium

Authors


Abstract

A protein map of the smallest known self-replicating organism, Mycoplasma genitalium (Class: Mollicutes), revealed a high proportion of acidic proteins. Amino acid composition was used to putatively identify, or provide unique parameters, for 50 gene products separated by two-dimensional gel electrophoresis. A further 19 proteins were subjected to peptide-mass fingerprinting using matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry and 4 were subjected to N-terminal Edman degradation. The majority of M. genitalium proteins remain uncharacterised. However, the combined approach of amino acid analysis and peptide-mass fingerprinting allowed gene products to be linked to homologous genes in a variety of organisms. This has allowed proteins to be identified prior to detection of their respective genes via the M. genitalium sequencing initiative. The principle of ‘hierarchical’ analysis for the mass screening of proteins and the analysis of microbial genomes via their protein complement or ‘proteome’ is detailed. Here, characterisation of gene products depends upon the quickest and most economical technologies being employed initially, so as to determine if a large number of proteins are already present in both homologous and heterologous species databases. Initial screening, which lends itself to automation and robotics, can then be followed by more time and cost intensive procedures, when necessary.

Ancillary