• CE;
  • Electromigration techniques;
  • Enantiomer;
  • Peptide;
  • Stereoisomer


The stereochemistry of peptides determines their physicochemical and biological activities. Thus, analytical methods that are able to discriminate between peptide stereoisomers are important. As peptides are typically hydrophilic compounds, many methods for the separation of peptide diastereomers and enantiomers have been developed by capillary electromigration techniques. Moreover, peptide enantiomers displayed unique migration behavior such as a pH-dependent change of the enantiomer migration order in CD-mediated enantioseparations in CE making them ideal compounds to study mechanistic effects of enantioseparations. The present short review summarizes recent developments in the separation of stereoisomers of peptide and peptidomimetics by capillary electromigration techniques. Moreover, recent NMR and molecular modeling studies as well as investigation on the effect of buffer additives on complex formation will be discussed as attempts to understand mechanistic aspects of peptide enantioseparations and to analyze the structure of peptide-CD complexes.