Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing

Authors


  • Colour Online: See the article online to view Figs. 1–5 in colour.

Abstract

A microfluidic platform developed for quantifying the dependence of erythrocyte (red blood cell, RBC) responses by ABO-Rh blood type via direct current insulator dielectrophoresis (DC-iDEP) is presented. The PDMS DC-iDEP device utilized a 400×170 μm2 rectangular insulating obstacle embedded in a 1.46-cm long, 200-μm wide inlet channel to create spatial non-uniformities in direct current (DC) electric field density realized by separation into four outlet channels. The DC-iDEP flow behaviors were investigated for all eight blood types (A+, A−, B+, B−, AB+, AB−, O+, O−) in the human ABO-Rh blood typing system. Three independent donors of each blood type, same donor reproducibility, different conductivity buffers (0.52–9.1 mS/cm), and DC electric fields (17.1–68.5 V/cm) were tested to investigate separation dependencies. The data analysis was conducted from image intensity profiles across inlet and outlet channels in the device. Individual channel fractions suggest that the dielectrophoretic force experienced by the cells is dependent on erythrocyte antigen expression. Two different statistical analysis methods were conducted to determine how distinguishable a single blood type was from the others. Results indicate that channel fraction distributions differ by ABO-Rh blood types suggesting that antigens present on the erythrocyte membrane polarize differently in DC-iDEP fields. Under optimized conductivity and field conditions, certain blind blood samples could be sorted with low misclassification rates.

Ancillary