5 References

  • 1
    Lanner, J. T., Ryanodine receptor physiology and its role in disease. Adv. Exp. Med. Biol. 2012, 740, 217234.
  • 2
    Demuro, A., Smith, M., Parker, I., Single-channel Ca(2+) imaging implicates Aβ1–42 amyloid pores in Alzheimer's disease pathology. J. Cell. Biol. 2011, 195(3), 515524.
  • 3
    Hopkins, A. L., Groom, C. R., The druggable genome. Nat. Rev. Drug Discov. 2002, 1(9), 727730.
  • 4
    Russell, R. B., Eggleston, D. S., New roles for structure in biology and drug discovery. Nat. Struct. Biol. 2000, 7 (Suppl), 928930.
  • 5
    Stevens, T. J., Arkin, I. T., Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 2000, 39(4), 417420.
  • 6
    Orth, J. H., Schorch, B., Boundy, S., Ffrench-Constant, R. et al., Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon. 2011, 57(2), 199207.
  • 7
    Gerrits, M., Kubick, S., Merk, H., Strey, J. et al., In vitro synthesis of modified Proteins. In: Kyriakopoulos, B. M. A., Graebert, A., Behne, D. (Ed.), Proceedings of the 5th Fall Conference on Metallobiolomics, Herbert Utz Verlag, München 2007.
  • 8
    Hillebrecht, J. R., Chong, S., A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol. 2008, 8(58), 17901793.
  • 9
    Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M. et al., N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002, 298(5599), 17901793.
  • 10
    Guarino, C., DeLisa, M. P., A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Glycobiology 2012, 22(5), 596601.
  • 11
    Kowarik, M. et al., Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 2006, 25(9), 19571966.
  • 12
    Endo, Y., Sawasaki, T., High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol. Adv. 2003, 21(8), 695713.
  • 13
    Madin, K., Sawasaki, T., Ogasawara, T., Endo, Y. et al., A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 2000, 97(2), 559564.
  • 14
    Erickson, A. H., Blobel, G., Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol. 1983, 96, 3850.
  • 15
    Jackson, R. J., Hunt, T., Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983, 96, 5074.
  • 16
    Bhanu Revathi, K., Kolluru, V. A. Ramaiah, Alan, G. Hinnebusch, Abani, K. Bhuyan et al., Trends in wheat germ cell free protein expression system with an emphasis on up-scaling and industrial application. Ind. J. Sci. Technol. 2010, 3(3), 349354.
  • 17
    Bayle, D., Weeks, D., Sachs, G., Identification of membrane insertion sequences of the rabbit gastric cholecystokinin—a receptor by in vitro translation. J. Biol. Chem. 1997, 272(32), 1969719707.
  • 18
    Kubick, S., Gerrits, M., Merk, H., Stiege, W. et al., In vitro synthesis of posttranslationally modified membrane proteins, in: DeLucas, L. (Ed.), “Membrane Protein Crystallization” Current Topics in Membranes, Elsevier, 2009, Chapter 2, Vol. 63, pp 25–51.
  • 19
    Kubick, S., Schacherl, J., Fleischer-Notter, H., Royall, E. et al., In vitro translation in an insect-based cell-free system, in: Swartz, J. R. (Ed.), Cell-Free Protein Expression, Springer, Berlin, Heidelberg, New York 2003, pp 209217.
  • 20
    Merk, H., Meschkat, D., Stiege, W., Expression-PCR: from Gene Pools to Purified Proteins Within 1 Day, In “Cell-Free Protein Expression”, in Swartz, J. R. (Ed.), Springer-Verlag Berlin and Heidelberg 2003.
  • 21
    Royall, E., Woolaway, K. E., Schacherl, J., Kubick, S. et al., The Rhopalosiphum padi virus 5’ internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for the baculovirus expression system. J. Gen. Virol. 2004, 85(Pt 6), 15651569.
  • 22
    von Groll U., Kubick, S., Merk, H., Stiege, W. et al., Advances in Insect-based Cell-free Protein Expression, in Wieslaw Kudlicki, F.K.a.R.B. (Ed.), Cell-Free Protein Expression, Landes Bioscience, Austin 2007.
  • 23
    Haberstock, S., Roos, C., Hoevels, Y., Dötsch, V. et al., A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr. Purif. 2012, 82(2), 308316.
  • 24
    Kubick, S., Merk, H., Stiege, W., von Groll, U. et al., Efficient large-scale synthesis and co-translation biotin labeling of recombinant proteins. Qiagen News 2005, 2, 3840.
  • 25
    Calhoun, K. A., Swartz, J. R., Energizing cell-free protein synthesis with glucose metabolism. Biotechnol. Bioeng. 2005, 90(5), 606613.
  • 26
    Holcik, M., Sonenberg, N., Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 2005, 6, 318327.
  • 27
    Farrell, P. J., Balkow, K., Hunt, T., Jackson, R. J. et al., Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 1977, 11(1), 187200.
  • 28
    Singh, L. P., Arorr, A. R., Wahba, A. J., Phosphorylation of the guanine nucleotide exchange factor and eukaryotic initiation factor 2 by casein kinase II regulates guanine nucleotide binding and GDP/GTP exchange. Biochemistry 1994, 33(31), 91529157.
  • 29
    Welsh, G. I., Miller, C. M., Loughlin, A. J., Price, N. T. et al., Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett. 1998, 421(2), 125130.
  • 30
    Zeenko, V. V., Wang, C., Majumder, M., Komar, A. A. et al., An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation. RNA 2008, 14(3), 593602.
  • 31
    Bernstein, H. D., Cotranslational translocation of proteins into canine rough microsomes. Curr. Protoc. Cell Biol. 2001, Chapter 11:Unit 11.4.
  • 32
    Rath, P., Demange, P., Saurel, O., Tropis, M. et al., Functional expression of the PorAH channel from Corynebacterium glutamicum in cell-free expression systems: implications for the role of the naturally occurring mycolic acid modification. J. Biol. Chem. 2011, 286(37), 3252532532.
  • 33
    Bulleid, N. J., Curling, E., Freedman, R. B., Jenkins, N. S., Source of heterogeneity in secreted interferon-gamma. A study on products of translation in vitro. Biochem. J. 1990, 268(3), 777781.
  • 34
    Paradis, G., Dubé, J. Y., Chapdelaine, P., Tremblay, R. R., In vitro translation of human prostatic acid phosphatase mRNA and processing of the translation products by microsomal membranes and endoglycosidase H. Biochem. Cell Biol. 1987, 65(10), 921924.
  • 35
    Jackson, R. C., Blobel, G., Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity. Proc. Natl. Acad. Sci. USA 1977, 74(12), 55985602.
  • 36
    Bocco, J. L., Panzetta, G. M., Flury, A., Patrito, L. C., Processing of SP1 precursor in a cell-free system from poly(A+) mRNA of human placenta. Mol. Biol. Reports 1988, 13, 4551.
  • 37
    Guth, S., Völzing, C., Müller, A., Jung, M. et al., Protein transport into canine pancreatic microsomes: a quantitative approach. Eur. J. Biochem. 2004, 271(15), 32003207.
  • 38
    Lowe, J. B., Marth, J. D., A genetic approach to mammalian glycan function. Annu. Rev. Biochem. 2003, 72, 643691.
  • 39
    Kornfeld, R., Kornfeld, S., Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631664.
  • 40
    Lis, H., Sharon, N., Protein glycosylation. Structural and functional aspects. Eur. J. Biochem. 1993, 218(1), 127.
  • 41
    Ceriotti, A., Duranti, M., Bollini, R., Effects of N-glycosylation on the folding and structure of plant proteins. J. Exp. Bot. 1998, 49(324,), 10911103.
  • 42
    Helenius, A., Aebi, M., Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 2004, 73, 10191049.
  • 43
    Nizard, P., Tetley, S., Le Dréan, Y., Watrin, T. et al., Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 2007, 8(5), 554565.
  • 44
    Sato, Y., Suzuki, Y., Ito, E., Shimazaki, S. et al., Identification and characterization of an increased glycoprotein in aging: age-associated translocation of cathepsin D. Mech. Ageing Dev. 2006, 127(10), 771778.
  • 45
    Blaschuk, O., Burdzy, K., Fritz, I. B., Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J. Biol. Chem. 1983, 258(12), 77147720.
  • 46
    Ivatt, R. J., The Biology of Glycoproteins, Plenum Press, New York 1984.
  • 47
    Gottschalk, A., Glycoproteins: Their Composition, Structure and Function, Elsevier Science Ltd, Amsterdam. 1972, p. 153.
  • 48
    Gibbs, P. E., Zouzias, D. C., Freedberg, I. M., Differential post-translational modification of human type I keratins synthesized in a rabbit reticulocyte cell-free system. Biochim. Biophys. Acta 1985, 824(3), 247255.
  • 49
    Curran, T., Gordon, M. B., Rubino, K. L., Sambucetti, L. C., Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene 1987, 2(1), 7984.
  • 50
    Nakamura, S., Possible role of phosphorylation in the function of chicken MyoD1. J. Biol. Chem. 1993, 268(16), 1167011677.
  • 51
    Maltese, W. A., Robishaw, J. D., Isoprenylation of C-terminal cysteine in a G-protein gamma subunit. J. Biol. Chem. 1990, 265(30), 1807118074.
  • 52
    Sanford, J., Codina, J., Birnbaumer, L., Gamma-subunits of G proteins, but not their alpha- or beta-subunits, are polyisoprenylated. Studies on post-translational modifications using in vitro translation with rabbit reticulocyte lysates. J. Biol. Chem. 1991, 266(15), 95709579.
  • 53
    Shaklee, P. M., Semrau, S., Malkus, M., Kubick, S. et al., Protein incorporation in giant lipid vesicles under physiological conditions. ChemBioChem. 2010, 11(2), 175179.
  • 54
    Junge, F., Haberstock, S., Roos, C., Stefer, S. et al., Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N. Biotechnol. 2011, 28(3), 262271.
  • 55
    Rapoport, T. A., Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450(7170), 663669.
  • 56
    Jun, S. Y., Kang, S. H., Lee, K. H., Fluorescent labeling of cell-free synthesized proteins with fluorophore-conjugated methionylated tRNA derived from in vitro transcribed tRNA. J. Microbiol. Methods 2008, 73(3), 247251.
  • 57
    Pedersen, M. W., Meltorn, M., Damstrup, L., Poulsen, H. S., The type III epidermal growth factor receptor mutation—biological significance and potential target for anti-cancer therapy. Ann. Oncol. 2001, 12(6), 745760.
  • 58
    Kuan, C. T., Wikstrand, C. J., Bigner, D. D., EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer 2001, 8(2), 8396.
  • 59
    Fath, S., Bauer, A. P., Liss, M., Spriestersbach, A. et al., Correction: multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 2011, 6(3), e17596.
  • 60
    Wells, K. D., Foster, J. A., Moore, K., Pursel, V. G. et al., Codon optimization, genetic insulation, an rtTA reporter improve performance of the tetracycline switch. Transgenic. Res. 1999, 8(5), 371381.
  • 61
    Levy, J. P., Muldoon, R. R., Zolotukhin, S., Link, C. J. Jr., Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat. Biotechnol. 1996, 14(5), 610614.
  • 62
    Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J. et al., A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 1996, 70(7), 46464654.