• Bioprocess characterization;
  • Image analysis;
  • Laser diffraction;
  • Plant cell aggregates;
  • Plant cell culture;
  • Taxus

In suspended culture, most relevant for biotechnological application, plant cells form aggregates. This phenomenon is of importance as it is related to productivity, leads to local heterogeneities, and might be a reason for the considerable shear sensitivity of these cultures. The valid measurement of plant cell aggregates, however, is not trivial, due to a rather large size distribution and measurement artifacts implied by the measuring method. In this study, laser diffraction was used as a novel method for characterization of Taxus chinensis cells, a major source for the antitumor agent paclitaxel. Aggregate size measured in shaking flask cultivations over 10 days revealed an increase during the growth phase of a batch cycle and a decrease during the stationary phase. During growth, the increase in bio dry weight was proportional to aggregate size. Laser diffraction was found superior to microscopy and image analysis, which had a tendency to underestimate aggregate size up to 20%. This novel approach provides a practicable, rapid, robust, and reproducible way to analyze a 100-fold more samples in considerably less time than image analysis and is therefore of especial value for quality control in industrial plant cell cultivation.