SEARCH

SEARCH BY CITATION

References

  • Anglicheau D, Pallet N, Rabant M, Marquet P, Cassinat B, Meria P, Beaune P, Legendre C, Thervet E (2006) Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 70: 1019- 1025
  • Argani P, Ladanyi M (2005) Translocation carcinomas of the kidney. Clin Lab Med 25: 363- 378
  • Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d'Hayer B, Mohamdi H, Remenieras A, et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480: 94- 98
  • Boger CA, Heid IM (2011) Chronic kidney disease: novel insights from genome-wide association studies. Kidney Blood Press Res 34: 225- 234
  • Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20: 3426- 3439
  • Chua S, Jr., Li Y, Liu SM, Liu R, Chan KT, Martino J, Zheng Z, Susztak K, D'Agati VD, Gharavi AG (2010) A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney Int 78: 453- 462
  • Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80: 1258- 1270
  • Esposito C, He CJ, Striker GE, Zalups RK, Striker LJ (1999) Nature and severity of the glomerular response to nephron reduction is strain-dependent in mice. Am J Pathol 154: 891- 897
  • Gharavi AG, Ahmad T, Wong RD, Hooshyar R, Vaughn J, Oller S, Frankel RZ, Bruggeman LA, D'Agati VD, Klotman PE, et al (2004) Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci USA 101: 2488- 2493
  • Greenhill ER, Rocco A, Vibert L, Nikaido M, Kelsh RN (2011) An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet 7: e1002265
  • Hershey CL, Fisher DE (2004) Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34: 689- 696
  • Hershey CL, Fisher DE (2005) Genomic analysis of the microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 347: 73- 82
  • Igarashi P, Whyte DA, Li K, Nagami GT (1996) Cloning and kidney cell-specific activity of the promoter of the murine renal Na-K-C1 cotransporter gene. J Biol Chem 271: 9666- 9674
  • Karnib HH, Chua S, Gharavi AG (2007) Genes for diabetic nephropathy: sweet prospects on the horizon. Kidney Int 71: 94- 96
  • Keller BJ, Martini S, Sedor JR, Kretzler M (2012) A systems view of genetics in chronic kidney disease. Kidney Int 81: 14- 21
  • Kren S, Hostetter TH (1999) The course of the remnant kidney model in mice. Kidney Int 56: 333- 337
  • Laouari D, Burtin M, Phelep A, Martino C, Pillebout E, Montagutelli X, Friedlander G, Terzi F (2011) TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol 22: 327- 335
  • Lautrette A, Li S, Alili R, Sunnarborg SW, Burtin M, Lee DC, Friedlander G, Terzi F (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11: 867- 874
  • Lin L, Gerth AJ, Peng SL (2004) Active inhibition of plasma cell development in resting B cells by microphthalmia-associated transcription factor. J Exp Med 200: 115- 122
  • Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC (1993) TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 73: 263- 278
  • Ma LJ, Fogo AB (2003) Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 64: 350- 355
  • Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124: 2377- 2386
  • Osterholm AM, He B, Pitkaniemi J, Albinsson L, Berg T, Sarti C, Tuomilehto J, Tryggvason K (2007) Genome-wide scan for type 1 diabetic nephropathy in the Finnish population reveals suggestive linkage to a single locus on chromosome 3q. Kidney Int 71: 140- 145
  • Papeta N, Chan KT, Prakash S, Martino J, Kiryluk K, Ballard D, Bruggeman LA, Frankel R, Zheng Z, Klotman PE, et al (2009) Susceptibility loci for murine HIV-associated nephropathy encode trans-regulators of podocyte gene expression. J Clin Invest 119: 1178- 1188
  • Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, Mansky KC (2011) HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 286: 12056- 12065
  • Pickering BM, Willis AE (2005) The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 16: 39- 47
  • Pillebout E, Burtin M, Yuan HT, Briand P, Woolf AS, Friedlander G, Terzi F (2001) Proliferation and remodeling of the peritubular microcirculation after nephron reduction: association with the progression of renal lesions. Am J Pathol 159: 547- 560
  • Pillebout E, Weitzman JB, Burtin M, Martino C, Federici P, Yaniv M, Friedlander G, Terzi F (2003) JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Invest 112: 843- 852
  • Prakash S, Papeta N, Sterken R, Zheng Z, Thomas RL, Wu Z, Sedor JR, D'Agati VD, Bruggeman LA, Gharavi AG (2011) Identification of the nephropathy-susceptibility locus HIVAN4. J Am Soc Nephrol 22: 1497- 1504
  • Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, Croker BP, Demetris AJ, Drachenberg CB, Fogo AB, et al (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int 55: 713- 723
  • Ratelade J, Lavin TA, Muda AO, Morisset L, Mollet G, Boyer O, Chen DS, Henger A, Kretzler M, Hubner N, et al (2008) Maternal environment interacts with modifier genes to influence progression of nephrotic syndrome. J Am Soc Nephrol 19: 1491- 1499
  • Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116: 288- 296
  • Reneker LW, Silversides DW, Patel K, Overbeek PA (1995) TGF alpha can act as a chemoattractant to perioptic mesenchymal cells in developing mouse eyes. Development 121: 1669- 1680
  • Rogus JJ, Moczulski D, Freire MB, Yang Y, Warram JH, Krolewski AS (1998) Diabetic nephropathy is associated with AGT polymorphism T235: results of a family-based study. Hypertension 31: 627- 631
  • Saito H, Takeda K, Yasumoto K, Ohtani H, Watanabe K, Takahashi K, Fukuzaki A, Arai Y, Yamamoto H, Shibahara S (2003) Germ cell-specific expression of microphthalmia-associated transcription factor mRNA in mouse testis. J Biochem (Tokyo) 134: 143- 150
  • Satko SG, Sedor JR, Iyengar SK, Freedman BI (2007) Familial clustering of chronic kidney disease. Semin Dial 20: 229- 236
  • Schelling JR, Zarif L, Sehgal A, Iyengar S, Sedor JR (1999) Genetic susceptibility to end-stage renal disease. Curr Opin Nephrol Hypertens 8: 465- 472
  • Schulz A, Standke D, Kovacevic L, Mostler M, Kossmehl P, Stoll M, Kreutz R (2003) A major gene locus links early onset albuminuria with renal interstitial fibrosis in the MWF rat with polygenetic albuminuria. J Am Soc Nephrol 14: 3081- 3089
  • Schwahn DJ, Timchenko NA, Shibahara S, Medrano EE (2005) Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res 18: 203- 213
  • Shahlaee AH, Brandal S, Lee YN, Jie C, Takemoto CM (2007) Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells. J Immunol 178: 378- 388
  • Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183- 1193
  • Steingrimsson E, Moore KJ, Lamoreux ML, Ferre-D'Amare AR, Burley SK, Zimring DC, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG, et al (1994) Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 8: 256- 263
  • Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38: 365- 411
  • Taal MW, Brenner BM (2006) Predicting initiation and progression of chronic kidney disease: developing renal risk scores. Kidney Int 70: 1694- 1705
  • Takemoto CM, Yoon YJ, Fisher DE (2002) The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. J Biol Chem 277: 30244- 30252
  • Terzi F, Burtin M, Hekmati M, Federici P, Grimber G, Briand P, Friedlander G (2000a) Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 106: 225- 234
  • Terzi F, Burtin M, Hekmati M, Jouanneau C, Beaufils H, Friedlander G (2000b) Sodium restriction decreases AP-1 activation after nephron reduction in the rat: role in the progression of renal lesions. Exp Nephrol 8: 104- 114
  • Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, Pikarsky E, Razin E (2006) Transcription factor MITF regulates cardiac growth and hypertrophy. J Clin Invest 116: 2673- 2681
  • Tshori S, Sonnenblick A, Yannay-Cohen N, Kay G, Nechushtan H, Razin E (2007) Microphthalmia transcription factor isoforms in mast cells and the heart. Mol Cell Biol 27: 3911- 3919
  • Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, et al (2010) Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 120: 4065- 4076
  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26: 5310- 5318
  • Zeng F, Singh AB, Harris RC (2009) The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 315: 602- 610