SEARCH

SEARCH BY CITATION

References

  • Amani V, Vigario AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Renia L (2000) Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30: 1646-1655
  • Amante FH, Haque A, Stanley AC, de Labastida Rivera F, Randall LM, Wilson YA, Yeo G, Pieper C, Crabb BS, de Koning-Ward TF, et al (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185: 3632-3642
  • Bagai R, Valujskikh A, Canaday DH, Bailey E, Lalli PN, Harding CV, Heeger PS (2005) Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a TAP1- and proteasome-dependent pathway. J Immunol 174: 7711-7715
  • Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigario AM (2010) Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 78: 4033-4039
  • Belizaire R, Unanue ER (2009) Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc Natl Acad Sci USA 106: 17463-17468
  • Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van RN, Viguier M, Snounou G, Renia L (2002) On the pathogenic role of brain-sequestered alpha beta CD8+ T cells in experimental cerebral malaria. J Immunol 169: 6369-6375
  • Belnoue E, Potter SM, Rosa DS, Mauduit M, Gruner AC, Kayibanda M, Mitchell AJ, Hunt NH, Renia L (2008) Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol 30: 544-553
  • Boubou MI, Collette A, Voegtle D, Mazier D, Cazenave PA, Pied S (1999) T cell response in malaria pathogenesis: selective increase in T cells carrying the TCR V(beta)8 during experimental cerebral malaria. Int Immunol 11: 1553-1562
  • Brewster DR, Kwiatkowski D, White NJ (1990) Neurological sequelae of cerebral malaria in children. Lancet 336: 1039-1043
  • Brochet X, Lefranc MP, Giudicelli V (2008) IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36: W503-W508
  • Burnett SH, Kershen EJ, Zhang J, Zeng L, Straley SC, Kaplan AM, Cohen DA (2004) Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 75: 612-623
  • Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, et al (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419: 512-519
  • Chelimo K, Embury PB, Odada Sumba P, Vulule J, Ofulla AV, Long C, Kazura JW, Moormann AM (2011) Age-related differences in naturally acquired T cell memory to Plasmodium falciparum merozoite surface protein 1. PLoS ONE 6: e24852
  • Claser C, Malleret B, Gun SY, Wong AY, Chang ZW, Teo P, See PC, Howland SW, Ginhoux F, Renia L (2011) CD8+ T cells and IFN-gamma mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS ONE 6: e18720
  • Craig AG, Grau GE, Janse CJ, Kazura JW, Milner DA, Jr, Barnwell JW, Turner GDH, Langhorne J (2012) The role of animal models for research on severe malaria. PLoS Pathog 8: e1002401
  • deWalick S, Amante FH, McSweeney KA, Randall LM, Stanley AC, Haque A, Kuns RD, MacDonald KP, Hill GR, Engwerda CR (2007) Cutting edge: conventional dendritic cells are the critical APC required for the induction of experimental cerebral malaria. J Immunol 178: 6033-6037
  • Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, du-Amankwah S, Geneshan H, Abot E, et al (2011) Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 10: 168
  • Engwerda C, Belnoue E, Gruner AC, Renia L (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297: 103-143
  • Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD, Kaye PM (2002) Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med 195: 1371-1377
  • Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R (2009) Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 8: 2090-2101
  • Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Buscher P, Que I, Lowik C, Voshol PJ, den Boer MAM, van Duinen SG, et al (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci USA 102: 11468-11473
  • Grotenbreg GM, Roan NR, Guillen E, Meijers R, Wang JH, Bell GW, Starnbach MN, Ploegh HL (2008) Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proc Natl Acad Sci USA 105: 3831-3836
  • Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, Karupiah G, Smyth MJ, Heath WR, Engwerda CR (2011) Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol 186: 6148-6156
  • Hermsen CC, Mommers E, van de WT, Sauerwein RW, Eling WM (1998) Convulsions due to increased permeability of the blood–brain barrier in experimental cerebral malaria can be prevented by splenectomy or anti-T cell treatment. J Infect Dis 178: 1225-1227
  • Hommes OR, Obbens EAMT (1972) The epileptogenic action of Na-folate in the rat. J Neurol Sci 16: 271-281
  • Howland SW, Poh CM, Renia L (2011) Directional, seamless, and restriction enzyme-free construction of random-primed complementary DNA libraries using phosphorothioate-modified primers. Anal Biochem 416: 141-143
  • Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE (2010) Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog 6: e1001021
  • Kurotaki T, Tamura Y, Ueda G, Oura J, Kutomi G, Hirohashi Y, Sahara H, Torigoe T, Hiratsuka H, Sunakawa H, et al (2007) Efficient cross-presentation by heats shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol 179: 1803-1426
  • Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10: 403-414
  • Lau LS, Fernandez RD, Davey GM, de Koning-Ward TF, Papenfuss AT, Carbone FR, Brooks AG, Crabb BS, Heath WR (2011) Blood-stage Plasmodium berghei infection generates a potent, specific CD8+ T-cell response despite residence largely in cells lacking MHC I processing machinery. J Infect Dis 204: 1989-1996
  • Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6: 1348-1354
  • Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 nelanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1: 191-199
  • Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS, Mintern JD, Belz GT, Schofield L, Carbone FR, et al (2008) Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci USA 105: 14509-14514
  • Malleret B, Claser C, Ong AS, Suwanarusk R, Sriprawat K, Howland SW, Russell B, Nosten F, Renia L (2011) A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Sci Rep 1: 118
  • McQuillan JA, Mitchell AJ, Ho YF, Combes V, Ball HJ, Golenser J, Grau GE, Hunt NH (2011) Coincident parasite and CD8+ T cell sequestration is required for development of experimental cerebral malaria. Int J Parasitol 41: 155-163
  • Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, Yui K (2008) Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181: 1420-1428
  • Mwakingwe A, Ting LM, Hochman S, Chen J, Sinnis P, Kim K (2009) Noninvasive real-time monitoring of liver-stage development of bioluminescent Plasmodium parasites. J Infect Dis 200: 1470-1478
  • Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170: 2221-2228
  • Obbens EA, Hommes OR (1973) The epileptogenic effects of folate derivatives in the rat. J Neurol Sci 20: 223-229
  • Ozawa T, Tajiri K, Kishi H, Muraguchi A (2008) Comprehensive analysis of the functional TCR repertoire at the single-cell level. Biochem Biophys Res Commun 367: 820-825
  • Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D (2005) Blood–brain barrier breakdown during cerebral malaria: suicide or murder? Thromb Haemost 94: 336-340
  • Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, Ruedl C (2012) Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J Immunol 189: 1128-1132
  • Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36: 485-496
  • Razakandrainibe R, Pelleau S, Grau GE, Jambou R (2012) Antigen presentation by endothelial cells: what role in the pathophysiology of malaria? Trends Parasitol 28: 151-160
  • Renia L, Gruner AC, Snounou G (2010) Cerebral malaria: in praise of epistemes. Trends Parasitol 26: 275-277
  • Renia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Teo TH, Russell B, Ng LFP (2012) Cerebral malaria: mysteries at the blood–brain barrier. Virulence 3: 193-201
  • Renia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, Snounou G, Gruner AC (2006) Pathogenic T cells in cerebral malaria. Int J Parasitol 36: 547-554
  • Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6: 369-376
  • Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV (2003) Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med 197: 643-656
  • Schurich A, Bottcher JP, Burgdorf S, Penzler P, Hegenbarth S, Kern M, Dolf A, Endl E, Schultze J, Wiertz E, et al (2009) Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 50: 909-919
  • Song L, Pachter JS (2003) Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev Biol Anim 39: 313-320
  • Thumwood CM, Hunt NH, Clark IA, Cowden WB (1988) Breakdown of the blood–brain barrier in murine cerebral malaria. Parasitology 96: 579-589
  • Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ, van de Kasteele W, Rimmelzwaan GF, Haanen JBAG, Ovaa H, et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12: 246-225
  • Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ (2009) Plasmodium falciparum-infected erythrocytes induce NF-kB regulated inflammatory pathways in human cerebral endothelium. Blood 114: 4243-4252
  • Villegas-Mendez A, Greig R, Shaw TN, de Souza JB, Gwyer Findlay E, Stumhofer JS, Hafalla JCR, Blount DG, Hunter CA, Riley EM, et al (2012) IFNgamma-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol 189: 968-979
  • Weiss WR, Good MF, Hollingdale MR, Miller LH, Berzofsky JA (1989) Genetic control of immunity to Plasmodium yoelii sporozoites. J Immunol 143: 4263-4266
  • Wohlleber D, Kashkar H, Gartner K, Frings MK, Odenthal M, Hegenbarth S, Borner C, Arnold B, Hammerling GJ, Nieswandt B, et al (2012) TNF-induced target cell killing by CTL activated through cross-presentation. Cell Rep 2: 478-487
  • Woodberry T, Pinzon-Charry A, Piera KA, Panpisutchai Y, Engwerda CR, Doolan DL, Salwati E, Kenangalem E, Tjitra E, et al (2009) Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) in acute malaria. Malar J 8: 122
  • World Health Organization. World malaria report: 2011
  • Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130: 53-563
  • Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC (1996) Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157: 1620-1624
  • Yoeli M, Most H (1965) Studies on sporozoite induced-infection of rodent malaria. I. The pre-erythrocytic stages of Plasmodium berghei. Am J Trop Med Hyg 14: 700-714