SEARCH

SEARCH BY CITATION

Keywords:

  • graphene;
  • microfluidics;
  • microbial fuel cells;
  • power generation;
  • wastewater

Abstract

Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).