Response surface methodology for the optimization of the electrochemical degradation of phenol on Pb/Pbo2 electrode

Authors

  • I. Yahiaoui,

    Corresponding author
    1. Laboratoire de Génie de l'Environment (LGE), Faculté de la Technologie, Université A. MIRA de 06000 Bejaia, Algérie
    • Laboratoire de Génie de l'Environment (LGE), Faculté de la Technologie, Université A. MIRA de 06000 Bejaia, Algérie
    Search for more papers by this author
  • F. Aissani-Benissad,

    1. Laboratoire de Génie de l'Environment (LGE), Faculté de la Technologie, Université A. MIRA de 06000 Bejaia, Algérie
    Search for more papers by this author
  • F. Fourcade,

    1. Ecole Nationale Supérieure de Chimie de Rennes, Université Rennes1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
    2. Université européenne de Bretagne, 5 Boulevard Laënnec 35000 Rennes, France
    Search for more papers by this author
  • A. Amrane

    1. Ecole Nationale Supérieure de Chimie de Rennes, Université Rennes1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
    2. Université européenne de Bretagne, 5 Boulevard Laënnec 35000 Rennes, France
    Search for more papers by this author

Abstract

The electrochemical oxidation of phenol on Pb/PbO2 electrode was carried out in order to develop a predictive model. A central composite design (CCD) was employed for the screening of significant operating parameters and to identify their most relevant interactions. The model equation obtained led to a classification of these parameters based on their level of significance, namely the current density, the temperature, the initial phenol concentration, and the agitation speed. In addition, three relevant interactions were found, current density—temperature, initial phenol concentration—current density and initial phenol concentration—temperature. After performing a screening of the various factors, response surface analysis led to the following optimal conditions for the yield of phenol degradation: 189 ≤ [pOH]0 ≤ 200 mg L−1, 19.66 ≤ i ≤ 25 mA cm−2, 600 rpm, and 60°C for the initial phenol concentration, the current density, the agitation speed, and the temperature , respectively. Under these conditions, the obtained phenol degradation yield was 71% and the chemical oxygen demand (COD) was reduced more than 45%. © 2011 American Institute of Chemical Engineers Environ Prog, 2011

Ancillary