Literature Cited

  • 1
    Display Search, (2012). Quarterly LCD Glass Substrate Report. Available at:
  • 2
    Lin, K.L., Chang, W.K., Chang, T.C., Lee, C.H., & Lin, C.H. (2009). Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as Glass-ceramics, Journal of Clean Production, 17, 14991503.
  • 3
    Shiu, H.S. (2012). Study on alkali-activated the TFT-LCD waste glass to synthesize fireproof materials, National Ilan University, Master Thesis (in Chinese).
  • 4
    Wang, H.Y. (2009). A study of the engineering properties of wasted LCD glass applied to controlled low strength materials concrete (CLSM), Journal of Construction and Building Materials, 6, 21272131.
  • 5
    Wang, H.Y. (2010). Mix proportions and properties of CLSC made from thin film transition liquid crystal display optical waste glass, Journal of Environmental Management, 91, 638645.
  • 6
    Wang, H.Y., & Huang, W.L. (2010). Durability of self-consolidating concrete using waste LCD glass, Journal of Construction and Building Materials, 6, 10081013.
  • 7
    Wang, H.Y. (2011). The effect of the proportion of thin film transistor–liquid crystal display (TFT–LCD) optical waste glass as a partial substitute for cement in cement mortar, Journal of Construction and Building Materials, 2, 791797.
  • 8
    Lin, K.L, Wu, H.H., Shie, J.L., Hwang, C.L., & Cheng, A. (2010). Recycling waste brick from construction and demolition of buildings as pozzolanic materials, Waste Management and Research, 28, 654659.
  • 9
    Lin, K.L., Huang, W.J., Shie, J.L., Lee, T.C., Wang, K.S., & Lee, C.H. (2009). The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material, Journal of Hazardous Materials, 163, 916921.
  • 10
    Lin, K.L., Chang, W.C., & Lin D.F. (2008). Pozzolanic Characteristics of pulverized incinerator bottom ash slag, Construction and Building Materials, 22, 324329.
  • 11
    Lin, K.L., & Lin, D.F. (2006). Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement, Cement and Concrete Composites, 28, 817882.
  • 12
    De Vargas, A.S., Molin, D.C.C.D., Vilela A.C.F., DaSilva, F.J., Pavão, B, & Veit, H. (2011). The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cement and Concrete Composites, 33, 653660.
  • 13
    Palomo, A., Grutzeck, M.W., & Blanco, M.T. (1999). Alkali-activated fly ashes: A cement for the future, Cement and Concrete Composites, 29, 13231329.
  • 14
    Panias, D., Giannopoulou, I.P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Physicochemical and Engineering Aspects, 301, 246254.
  • 15
    Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Construction and Building Materials, 24, 11761183.
  • 16
    Davidovits, J. (1994). Properties of geopolymer cements, First International Conference on Alkaline Cements and Concretes (pp. 131149), Kiev, Ukarine.
  • 17
    Menezes, R.R., Brasileiro, M.I., Santana, L.N.L., Neves, G.A., Lira, H.L., & Ferreira, H.C. (2008). Utilization of kaolin processing waste for the production of porous ceramic bodies, Waste Management and Research, 26, 362368.
  • 18
    Cheng, T.W., & Chiu, J.P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16, 205210.
  • 19
    Zhang, Z., Yao, X., & Zhu, H. (2010). Potential application of geopolymers as protection coatings for marine concrete I. Basic properties, Applied Clay Science, 49, 16.
  • 20
    Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer, Applied Clay Science, 43, 218223.
  • 21
    Xu, H., & Van Deventer, J.S.J. (2000). The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 35, 16881697.
  • 22
    Flanigan, E.M., Khatami, H., & Szymanski, H.A. (1971). Molecular sieve zeolites, Advances in Chemistry Series (Volume 101, pp. 201229), Washington, American Chemical Society.
  • 23
    Sitarz, M., Handke, M., & Mozgawa, W. (2000). Identification of silicooxygen rings in SiO2 based on IR spectra, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 18191823.
  • 24
    Bernal, S.A., Provis, J.L, Rose, V., & De Gutierrez, R.M. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cement and Concrete Research, 33, 4654.
  • 25
    Rattanasak, U., & Chindaprasirt, P. (2010). Influence of NaOH solution on the synthesis of fly ash geopolymer, Construction and Building Materials, 24, 11761183.
  • 26
    Verdolotti, L., Iannace, S., Lavorgna, M., & Lamanna, R. (2008). Geopolymerization reaction to consolidate incoherent pozzolanic soil, Journal of Materials Science, 43, 865873.
  • 27
    Hajimohammadi, A., Provis, J.L., & Van Deventer, J.S.J. (2011). Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation, Journal of Colloid and Interface Science, 357, 384392.
  • 28
    Kong, D.L.Y., Sanjayan, J.G., & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cement and Concrete Research, 37, 15831589.
  • 29
    Steveson, M.S., & Sagoe-Crentsil, K. (2005). Relationships between composition, structure and strength of inorganic polymers. Part I. Metakaolin-derived inorganic polymer, Journal of Materials Science, 40, 20232036.
  • 30
    Thomas, M.D.A., Cail, K., Blair, B., Delagrave, A., Masson, P., & Kazanis, K. Use of Low-CO2 Portland Limestone Cement for Pavement Construction in Canada, International Journal of Pavement Research and Technology, 3, 228233.