• 1
    Stiegel, G.J., & Ramezan, M. (2006). Hydrogen from coal gasification: An economical pathway to a sustainable energy future, International Journal of Coal Geology, 65, 179190.
  • 2
    Abbas, H.F., & Daud, W.W. (2010). Hydrogen production by methane decomposition: A review, International Journal of Hydrogen Energy, 35, 11601190.
  • 3
    Muradov, N.Z. (1998). CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel, Energy and Fuels, 12, 4148.
  • 4
    Audus, H., Kaarstad, O., & Kowal, M. (1996). Decarbonization of fossil fuel: Hydrogen as an energy carrier. Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart, Germany, p. 525.
  • 5
    Blok, K., Williams, R., Katofsky, R., & Hendriks, C. (1997). Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery, Energy, 22, 161168.
  • 6
    International Energy Agency. (1998). Carbon dioxide capture from power stations. IEA Greenhouse Gas R & D Programme, Leading Options for the Capture of CO2 Emissions at Power Stations, report PH3/14, Feb. 2000.
  • 7
    Steinberg, M. (1999). Fossil fuel decarbonization technology for mitigating global warming, International Journal of Hydrogen Energy, 24, 771.
  • 8
    Caulfield, J., Auerbach, D., Adam, E., & Herzog, H. (1997). Near field impacts of reduced pH from ocean CO2 disposal, Energy Conversions Management, 38, 343.
  • 9
    Muradov, N.Z., & Veziroglu, T.N. (2005). From hydrogen to hydrogen-carbon to hydrogen economy, International Journal of Hydrogen Energy, 30, 225237.
  • 10
    Aiello, R., Fiscus, J.F., Loye, H.Z., & Amiridis, M.D. (2000). Hydrogen production via the direct cracking of methane over Ni/SiO2: Catalyst deactivation and regeneration, Applied Catalysis A: General, 192, 227234.
  • 11
    Piao, L.Y., Li, Y.D., Chen, J.L., Chang, L., & Lin, J.Y.S. (2002). Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst, Catalyst Today, 74, 145155.
  • 12
    Ermakova, M.A., Ermakov, D.Y., & Kuvshinov, G.G. (2000). Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon. Part I. Nickel catalysts, Applied Catalysis A: General, 210, 6170.
  • 13
    Zein, S.H.S., Mohamed, A.R., & Sai, P.S.T. (2004). Kinetic studies on catalytic decomposition of methane to hydrogen and carbon over Ni/TiO2 catalyst, Industrial Engineering and Chemistry Research, 43, 48644870.
  • 14
    Konieczny, A., Mondal, K., Wiltowaski, T., & Dydo, P. (2008). Catalyst development of thermocatalytic decomposition of methane to hydrogen, International Journal of Hydrogen Energy, 33, 264272.
  • 15
    Takenaka, S., Serizawa, M., & Otsuka, K. (2004). Formation of filamentous carbon over supported Fe-catalysts through methane decomposition, Journal of Catalysis, 222, 520531.
  • 16
    Wang, H.Y., & Ruckenstein, E. (2002). Formation of filamentous carbon during methane decomposition over Co-MgO catalysts, Carbon, 40, 19111917.
  • 17
    Reshetenko, T.V., Avdeeva, L.B., Ismagilov, Z.R., Chuvilin, A.L., & Fenelonov, V.B. (2005). Catalytic filamentous carbons-support Ni for low-temperature methane decomposition, Catalysis Today, 102, 115120.
  • 18
    Li, Y.D., Li, D.X., & Wang, G.W. (2011). Methane decomposition to Cox-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review, Catalyst Today, 152, 148.
  • 19
    Liao, M.S., & Zhang, Q.E. (1998). Dissociation of methane on different transition metals, Journal of Molecular Catalysis A: Chemical, 136, 185194.
  • 20
    Otsuka, K., Ogihara, H., & Takenaka, S. (2003). Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons, Carbon, 41, 223233.
  • 21
    Muradov, N., Smith, F., & Raissi, A.T. (2005). Catalytic activity of carbons for methane decomposition reaction, Catalysis Today, 102, 225233.
  • 22
    Abbas, H.F., & Baker, I.F. (2011). Thermocatalytic decomposition of methane using activated carbon: Studying the influence of process parameters using factorial design, International Journal of Hydrogen Energy, 36, 89858993.
  • 23
    Abbas, H.F., & Daud, W.W. (2010). Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: Apparent kinetic, deactivation and diffusional limitation studies, International Journal of Hydrogen Energy, 35, 1226812276.
  • 24
    Kim, M.H., Lee, E.K., Jun, J.H., Kong, S.J., Han, G.Y., Lee, B.K., Lee, T.J., & Yoon, K.J. (2004). Hydrogen production by catalytic decomposition of methane over activated carbons: Kinetic study, International Journal of Hydrogen Energy, 29, 187193.
  • 25
    Bilgen, E., & Galindo, J. (1981). High temperature solar reactors for hydrogen production, International Journal of Hydrogen Energy, 6, 139152.
  • 26
    Hirsch, D., Epstein, M., & Steinfeld, A. (2001). The solar thermal decarbonization of natural gas, International Journal of Hydrogen Energy, 26, 10231033.
  • 27
    Dahl, J.K., Tamburini, J., Weimer, A.W., Lewandowski, A., Pitts, R., & Bingham, C. (2001). Solar-thermal processing of methane to produce hydrogen and syngas, Energy Fuel, 15, 12271232.
  • 28
    Dahl, J.K., Buechler, K.J., Finley, R., Stanislaus, T., Weimer, A.W., Lewandowski, A., Bingham, C., Smeets, A., & Schneider, A. (2002). Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Proceedings of the 11th Solar PACES Symposium on Concentrated Solar Power and Chemistry Energy Technologies, Zurich, Switzerland, pp. 223230.
  • 29
    Dahl, J.K., Buechler, K.J., Weimer, A.W., Lewandowski, A., & Bingham, C. (2004). Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor, International Journal of Hydrogen Energy, 29, 725736.
  • 30
    Magg, G., Zanganeh, G., & Steinfeld, A. (2009). Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon, International Journal of Hydrogen Energy, 34, 76767685.
  • 31
    Gokon, N., Oku, Y., Kaneko, H., & Tamaura, Y. (2002). Methane reforming with CO2 in molten salt using FeO catalyst, Solar Energy, 72, 243250.
  • 32
    Kodama, T., Koyanagi, T., Shimizu, T., & Kitayama, Y. (2001). CO2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes, Energy Fuel, 15, 6065.
  • 33
    Falco, M.D., Giaconia, A., Marrelli, L., Tarquini, P., Grena, R., & Caputo, G. (2009). Enriched methane production using solar energy: An assessment of plant performance, International Journal of Hydrogen Energy, 34, 98109.
  • 34
    Wei, Y.G., Wang, H., He, F., Ao, X.Q., & Zhang, C.Y. (2007). CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: Thermodynamic analysis and experimental investigation, Journal of Natural Gas Chemistry, 16, 611.
  • 35
    Wei, Y.G., Ao, X.Q., & Wang, H. (2008). Novel method for metallic zinc and synthesis gas production in alkali molten carbonates, Energy Conversion and Management, 49, 20632068.
  • 36
    Kodama, T., Gokon, N., Inuta, S.C., Yamashita, S., & Seo, T. (2009). Molten-salt tubular absorber/reformer (MoSTAR) project: The thermal storage media of Na2CO3-MgO composite materials, Journal of Solar Energy Engineering, 131, 111118.
  • 37
    Massenzio, S. (1984). Exxon fluid coking and flexicoking processes for synfuels upgrading applications. Handbook of Synfuel Technology. New York: McGraw Hill Book Company.
  • 38
    Muradov, N. (2000). Thermocatalytic CO2-free production of hydrogen from hydrocarbon fuels. Proceedings of DOE Hydrogen Program Annual Meeting, San Ramon, California, USA.
  • 39
    Muradov, N., & Smith, F. (2003). Thermocatalytic production of hydrogen from natural gas with drastically reduced CO2 emissions. Proceedings of Hydrogen Power Theoretical and Engineering Solution International Symposium, Porte Conte, Italy.
  • 40
    Spath, P., Amos, W., & Mann, M. (2002). Process analysis work for the DOE hydrogen program. Proceedings of 2002 DOE hydrogen program, NREL/CP-610-32405, Golden, Colorado, USA.
  • 41
    Steinberg, M., & Cheng, H. (1989). Modern and prospective technologies for hydrogen production from fossil fuels, International Journal of Hydrogen Energy, 14, 797.
  • 42
    Gaudernack, B., & Lynum, S. (1996). Hydrogen from natural gas without release of CO2 to the atmosphere. Proceedings of the 11th World Hydrogen Energy Conference, p. 511, Stuttgart, Germany.
  • 43
    Steinfield, A., & Spiewak, I. (1998). Economic evaluation of the solar thermal co-production of zinc and synthesis gas, Energy Conversion and Management, 39, 15131518.
  • 44
    Spath, P., & Amos, W.A. (2003). Using a concentrating solar reactor to produce hydrogen and carbon black via thermal decomposition of natural gas: Feasibility and economics, Journal of Solar Energy Engineering, 125, 159164.
  • 45
    Spiewak, I., Tyner, C.E., & Langnickel, U. (1992). Solar reforming applications study summary. Proceeding of the 6th International Symposium on Solar Thermal Concentrating Technologies, pp. 771–777, Mojacar, Spain.
  • 46
    Steinfield, A. (2002). Solar hydrogen production via a 2-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions, International Journal of Hydrogen Energy, 27, 611619.