SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Yamada, H., Mori, H., & Tagawa, T. (2010). CO2 reforming of waste plastics, Journal of Industrial and Engineering Chemistry 16, 79.
  • 2
    Williams, P.T., & Williams, E.A. (1999). Interaction of plastics in mixed-plastics pyrolysis, Energy Fuels, 13, 188196.
  • 3
    Saeed, L., & Zevenhoven, R. (2002). Comparison between two-stage waste combustion with HCl recovery and conventional incineration plants, Energy Sources 24, 4157.
  • 4
    Hamid, S.H., & Amin, M.B. (1995). Lifetime prediction of polymers, Journal of Applied Polymer Science 55, 13851394.
  • 5
    Huang, Y., Yan, H.-X., & Zhang, Q.-Y. (2002). Liquid fuel manufactured from waste plastics cracking, Plastics 31, 3640.
  • 6
    Li, X.-X., Shi, Y.-F., & Yu, H.-R. (2002). Preparation of fuel oil from plastic waste by catalytic cracking, Environmental Protection Chemical Industries 22, 9094.
  • 7
    Singh, K.J., & Sooch, S.S. (2004). Comparative study of economics of different models of family size biogas plant for state of Punjab, India Energy Conversion and Management, 45, 13291341.
  • 8
    Amigun, B., Sigamoney, R., & Von-Blottnitz, H. (2008). Commercialisation of biofuel industry in Africa: A review, Renewable and Sustainable Energy Reviews 12, 690711.
  • 9
    Taghiei, M.M., Huggins, F.E., & Huffman, G.P. (1993). Co-liquefaction of waste plastics with coal, Preprints of ACS Meeting (pp. 816822), Chicago.
  • 10
    Anderson, L.L., & Tuntawiroon, W. (1993). Co-liquefaction of coal and polymers to liquid fuels, Preprints of ACS Meeting (pp. 816822), Chicago.
  • 11
  • 12
    Hassan, M.N., Zakaria, Z., & Rahaman, R.A. (1999). Managing costs of urban pollution in Malaysia: The case of solid waste, paper presented in MPPJ Seminar Petaling Jaya, Malaysia.
  • 13
    Mansor, W.G. (1999). Waste prevention: A consumerist approach to waste management. Paper presented in EPSM seminar on local communities and the environment (Volume 27).
  • 14
    Sivapalan, K., Muhd Noor, M.Y., Abd Halim, S., Kamaruzzaman, S., & Rakmi, A.R. (2002) Comprehensive characteristics of the municipal solid waste generation in Kuala Lumpur. Proceedings of the Regional Symposium on Environment and Natural Resources 10–11th April 2002 (Volume 1. pp. 359–368), Hotel Renaissance Kuala Lumpur, Malaysia.
  • 15
    Budhiarta, I., Siwar, C., & Basri, H. (2012). Current status of municipal solid waste generation in Malaysia, International Journal on Advanced Science Engineering Information Technology, 2, 1621.
  • 16
    Nasir, A.A. (2007). Institutionalizing solid waste management in Malaysia: Department of National Solid Waste Management. Ministry of Housing and Local Government Malaysia, Power Point Presentation.
  • 17
    Tchobanoglous, G., Theisen, H., & Vigil, S. (1993).Integrated solid waste management-engineering principles and management issues. New York: McGraw-Hill.
  • 18
    Wahid, A.G., Hassan, M.N., & Muda, A. (1996). Domestic and commercial waste: Present and future trends. CAP-SAM National Conference on the State of the Malaysian Environment, Penang: RECDAM.
  • 19
    Panda, A.K., Singh, R.K., & Mishra, D.K. (2010). Thermolysis of waste plastics to liquid fuel: suitable method for plastic waste management and production of value added products-A world prospective, Renewable and Sustainable Energy Reviews, 14, 233248.
  • 20
    Guohua, L., Tomohiko, S., Satomi, Y., & Kunio, K. (2000). Catalytic degradation of high density polyethylene and polypropylene into liquid fuel in a powder-particle fluidized bed, Polymer Degradation and Stability, 70, 97102.
  • 21
    Clark, J.H. (1999). Feedstock recycling of plastic wastes, Royal Society of Chemistry Clean Technology Monographs, London.
  • 22
    Chen, L.F., Zhou, X., Noreña, L.E., Yu, G., Li, C., & Wang, J.A. (2007). Framework modification and acidity enhancement of zirconium-containing mesoporous materials, Studies in Surface Science and Catalysis, Recent Progress in Mesostructured Materials (Volume 165, pp. 199202).
  • 23
    Chen, L.F., Noreña, L.E., Zhou, X.L., Wang, J.A., Navarrete, J., Salas, P., & Montoya, A. (2006). Comparative studies of mesoporous Zr-MCM-41 and Zr-MCM-48: Synthesis and physicochemical properties, Applied Surface Science, 253, 24432451.
  • 24
    Díaz-García, M., Aguilar-Pliego, J., Herrera-Pérez, G., Guzmán, L., Schachat, P., Noreña-Franco, L., Aguilar-Elguezábal, A., & Gutiérrez-Arzaluz, M. (2010). Isomerization of pinene with Al- and Ga- modified MCM-41 mesoporous materials, Advanced Materials Research, 132, 162173.
  • 25
    Boveri, M., Aguilar-Pliego, J., Pérez-Pariente, J., & Sastre, E. (2005). Optimization of the preparation method of HSO3-functionalized MCM-41 solid catalysts, Catalysis Today, 107–108, 868873.
  • 26
    Hernández, A., Noreña, L., Chen, L.F., Wang, J.A., & Aguilar, J. (2010). Refinery oil fraction fuels obtained from polyethylene catalytic cracking employing heteropolyacid-MCM-41 materials, Advanced Materials Research, 132, 236245.
  • 27
    Schacht, P., Aguilar-Pliego, J., Ramírez-Garnica, M., Ramírez, S., Abu, I., & Noreña-Franco, L. (2010). Effect of CoMo/HSO3-functionalized MCM-41 over heavy oil, Journal of The Mexican Chemical Society, 54, 194200.
  • 28
    Wang, J.A., Zhou, X.L., Chen, L.F., Noreña, L.E., Yu, G.X., & Li, C.L. (2009). Hydroisomerization of n-heptane on Pt/H3PW12O40/Zr-MCM-41 catalysts, Journal of Molecular Catalysis A: Chemical, 299, 6876.
  • 29
    Wang, J.A., Chen, L.F., Noreña, L.E., Navarrete, J., & Llanos, M.E. (2008). Mesoporous structure, surface acidity and catalytic properties of Pt/Zr-MCM-41 catalysts promoted with 12-tungstophosphoric acid, Microporous & Mesoporous Materials, 112, 6176.
  • 30
    Yang, X.K., Chen, L.F., Wang, J.A., Noreña, L.E., & Novaro, O. (2009). Study of the Keggin structure and catalytic properties of Pt-promoted heteropolycompound/Al-MCM- 41 hybrid catalysts, Catalysis Today, 148, 160168.
  • 31
    Serrano, D.P., Aguado, J., Escola, J.M., Rodriguez, J.M., & Peral, A. (2010). Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies, Journal of Catalysis, 276, 152160.
  • 32
    Buekens, A.G., & Huang, H. (1998). Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes, Resources Conservation and Recycling, 23, 163181.
  • 33
    Uemichi, Y., Makino, Y., & Kanazuka, T. (1989). Degradation of polyethylene to aromatic hydrocarbons over metal-supported activated carbon catalysts, Journal of Analytical and Applied Pyrolysis, 14, 331344.
  • 34
    Zhibo, Z., Nishio, S., Morioka, Y., Ueno, A., Ohkita, H., & Tochihara, Y. (1996). Thermal and chemical recycle of waste polymers, Catalysis Today, 29, 303308.
  • 35
    Seo, Y.H., Lee, K.H., & Shin, D.H. (2003). Investigation of catalytic degradation of high density, polyethylene by hydrocarbon group type analysis, Journal of Analytical and Applied Pyrolysis, 70, 383398.
  • 36
    Azhar-uddin, M., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil, Polymer Degradation and Stability, 56, 3744.
  • 37
    Buekens, A.G., & Huang, H. (1998).Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes, Resources Conservation and Recycling, 23, 163181.
  • 38
    Miranda, R., Pakdel, H., Roy, C., & Vasile C. (2001).Vacuum pyrolysis of commingled plastics containing PVC II. Product Analysis, Polymer Degradation and Stability, 73, 4767.
  • 39
    Sahu, J.N., Chava, V.S.R.K., Hussain, S., Patwardhan, A.V., & Meikap, B.C. (2010). Optimization of ammonia production from urea in continuous process using ASPEN Plus and computational fluid dynamics study of the reactor used for hydrolysis process, Journal of Industrial and Engineering Chemistry, 16, 577586.
  • 40
    Retrieved from http//www.matche.com.
  • 41
  • 42
    Sinnott, R.K., & Coulson, R. (1948). Chemical Engineering (Volume 6, 4th Edition), UK: Butterworth Heinemann.
  • 43
    Lang, H.J. (1948). Simplified approach to preliminary cost estimates, Chemical Engineering, 55, 112113.
  • 44
    Wilson, G.T. (1971). Capital investment for chemical plant, British Chemical Engineering, 16, 931934.
  • 45
    Peters, M.S., & Timmerhaus, K.D. (1980). Plant design and economics for chemical engineers, New York: McGraw-Hill Book.
  • 46
    Montfoort, A.G., & Meijer, F.A. (1983). Improved Lang factor approach to capital cost estimating, Process Economics International, 4, 2021.
  • 47
    George, D.J. (1988). A guide to capital cost estimation (3rd Edition), The Institution of Chemical Engineers, Rugby, England.
  • 48
    Kharbanda, O.P., & Stallworthy, E.A. (1988). Capital cost estimating for the process industry, London: Butterworth & Co. Ltd.
  • 49
    Turton, R., Baillie, R.C., Whiting, W.B., & Shaewitz, J.A. (1989). Analysis, synthesis and design of chemical process, NJ, USA: Parentic Hall, OTR.
  • 50
    Remer, D.S., & Chai, L.H. (1990). Estimate cost of scaled-up process plants, Chemical Engineering, 94, 138175.
  • 51
    Sinnott, R.K. (1996). Chemical process design. In J.M. Coulson & J.F. Richardson (Eds.), Chemical Engineering Design (Volume 6, 3rd Edition, pp. 243260), UK: Butterworth Heinemann.
  • 52
    Garret, D.E. (1998). Chemical engineering economics, New York: Van Nostrand.
  • 53
    Smith, R. (2005). Chemical process design and integration (2nd Edition), UK: Wiley.