SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Pourmohammadbagher, A., Jamshidi, E., Ale-Ebrahim, H., & Dabir, S. (2011). Study on simultaneous removal of NOx and SO2 with NaClO2 in a novel swirl wet system, Industrial & Engineering Chemistry Research, 50, 82788284.
  • 2
    Khan, N.E., & Adewuyi,Y.G. (2010). Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor, Industrial & Engineering Chemistry Research, 49, 87498760.
  • 3
    Skalska, K., Miller, J.S., & Ledakowicz, S. (2012). Intensification of NOx absorption process by means of ozone injection into exhaust gas stream, Chemical Engineering and Processing, 61,6974.
  • 4
    Liu, Y.X., Zhang, J., & Wang, Z.L. (2012). A study on kinetics of NO absorption from flue gas by using UV/Fenton wet scrubbing, Chemical Engineering Journal, 197, 468474.
  • 5
    Long, X.L., Xin, Z.L., Chen, M.B., Li, W., Xiao, W.D., & Yuan, W.K. (2008). Kinetics for the simultaneous removal of NO and SO2 with cobalt ethylenediamine solution, Separation and Purification Technology, 58, 328334.
  • 6
    Shi, Y., Littlejohn, D., & Chang, S.G. (1996). Kinetics of NO absorption in aqueous iron(II) bis(2,3-dimercapto-1 -propanesulfonate) solutions using a stirred reactor, Industrial & Engineering Chemistry Research, 35, 16681772.
  • 7
    Wanat, A., Schneppensieper, T., Karocki, A., Stochel, G., &van Eldik, R. (2002). Thermodynamics and kinetics of RuIII(edta) as an efficient scavenger for nitric oxide in aqueous solution, Journal of the Chemical Society, Dalton Transactions, 6, 941950.
  • 8
    Sada, E., Kumazawa, H., & Machida, H. (1987). Oxidation kinetics of Fe(II)edta and Fe(II)NTA chelates by dissolved oxygen, Industrial & Engineering Chemistry Research, 26, 14681472.
  • 9
    Wubs, H.J. & Beenackers, A.A.C.M. (1993). Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution, Industrial & Engineering Chemistry Research, 32, 25802594.
  • 10
    Suchecki, T.T., Mathews, B., & Kumazawa, H. (2005). Kinetic study of ambient temperature reduction of Fe(III)EDTA by Na2S2O4, Industrial & Engineering Chemistry Research, 44, 42494253.
  • 11
    Mendelsohn, M.H. & Harkness, J.B.L. (1991). Enhanced flue-gas denitrification using ferrous-EDTA and a polyphenolic compound in an aqueous scrubber system, Energy Fuels, 5, 244248.
  • 12
    Wang, L., Zhao, W.R., & Wu, Z.B. (2007). Simultaneous absorption of NO and SO2 by Fe(II) EDTA combined with Na2SO3 solution, Chemical Engineering Journal,132, 227232.
  • 13
    Suchecki, T.T. & Kumazawa, H. (1994). Application of hydrazine to regeneration of post-absorption solutions in combined SO2/NOx removal from flue gases by a complex method, Separation Science and Technology, 763770.
  • 14
    van der Maas, P., van den Bosch, P., Klapwijk, B., & Lens, P. (2005). NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process, Biotechnology and Bioengineering, 90, 433441.
  • 15
    Li, W., Wu,C.-Z., Zhang, S.-H., Shao, K., & Shi, Y. (2007). Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system, Environmental Science & Technology, 41, 639644.
  • 16
    Zhang, S.-H., Cai, L.-L., Liu, Y., Shi, Y., & Li, W. (2009). Effects of NO2 and NO3 on the Fe(III)EDTA reduction in a chemical absorption–biological reduction integrated NOx removal system, Applied Microbiology and Biotechnology, 82, 557563.
  • 17
    Zhang, S.-H., Li, W., Wu, C.-Z., & Shi, Y. (2007). Reduction of Fe(II)EDTA NO by a newly isolated Pseudomonas sp. strain DN-2 in Nox scrubber solution, Applied Microbiology and Biotechnology, 76, 11811187.
  • 18
    Zhu, H.S., Mao, Y.P., Yang, X.J., Chen, Y., Long, X.L., & Yuan, W.K. (2010). Simultaneous absorption of NO and SO2 into FeII–EDTA solution coupled with the FeII–EDTA regeneration catalyzed by activated carbon, Separation and Purification Technology, 74, 16.
  • 19
    Pevida, C., Plaza, M.G., Arias, B., Fermoso, J., Rubiera, F., & Pis, J.J. (2008). Surface modification of activated carbons for CO2 capture, Applied Surface Science 254, 71657172.
  • 20
    #Chen, S.X., Xu, R.M., Huang, H.X., Yi, F.Y., Zhou, X., & Zeng, H.M. (2007). Reduction–adsorption behavior of platinum ions on activated carbon fibers, Journal of Materials Science 42, 95729581.
  • 21
    Natale, F.D., Lancia, A., Molino, A., & Musmarra, D. (2007). Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char, Journal of Hazardous Materials,145, 381390.
  • 22
    Long, X.L., Xin, Z.L., Wang, H.X., Xiao, W.D., & Yuan, W.K. (2004). Simultaneous removal of NO and SO2 with hexamminecobalt(II) solution coupled with the hexamminecobalt(II) regeneration catalyzed by activated carbon, Applied Catalysis B: Environmental, 54, 2532.
  • 23
    Bashkova, S., Bagreev, A., & Bandosz, T.J. (2005). Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan, Catalysis Today, 99, 323328.
  • 24
    Domingo-García, M., López Garzón, F.J., & Pérez-Mendoza, M.J. (2002). On the characterization of chemical surface groups of carbon materials, Journal of Colloid and Interface Science, 248, 116122.
  • 25
    Muňiz, J., Herrero, J.E., & Fuertes, A.B. (1998). Treatments to enhance the SO2 capture by activated carbon fibres, Applied Catalysis B: Environmental,18, 171179.
  • 26
    Boudou, J.P., Chehimi, M., Broniek, E., Siemieniewska, T., & Bimer, J. (2003). Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment, Carbon, 41, 19992007.
  • 27
    El-Hendrawy, A.-N.A. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon, Carbon, 41, 713722.
  • 28
    Tamon, H. & Okazaki, M. (1996). Influence of acidic surface oxides of active carbon on gas adsorption characteristics, Carbon 34, 741746.
  • 29
    Pradhan, K.B. & Sandle, K.N. (1999). Effect of different oxidizing agent treatments on the surface properties of activated carbon, Carbon, 37, 13231332.
  • 30
    Chen, P.J. & Wu, S. (2004). Acid/base-treated carbons: Characterization of functional groups and metal adsorption properties, Langmuir 20, 22332242.
  • 31
    Zawadzki, J. (1989). Infrared spectroscopy in surface chemistry of carbons, chemistry and physics of carbon (Volume 21, pp. 782795), New York: Dekker.
  • 32
    Biniak, S., Szymanski, G., Siedlewski, J., & Swiatkowski, A. (1997). The characterization of activated carbon with oxygen surface groups, Carbon, 35, 17991810.
  • 33
    Rodriduez-Reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis, Carbon, 36, 159175.
  • 34
    Leon, Y., Leon, C.A., & Radovic, L.R. (1994). In P.A. Thrower (Ed.), Chemistry and physics of carbon (Volume 24, p. 213), NewYork: Marcel Dekker.