SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Bansal, P. & Sud, D. (2011). Photodegradation of commercial dye, Procion Blue HERD from real textilewastewater using nanocatalysts, Desalination, 267, 244249.
  • 2
    Guo, G.F., Hu, Y., Jiang, S.M., & Wei, C.H. (2012). Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites, Journal of Hazardous Materials, 223-224, 3945.
  • 3
    Wang, W.G., Yu, J.G., Xiang, Q.J., & Cheng, B. (2012). Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air, Applied Catalysis B: Environmental, 119-120, 109116.
  • 4
    Marto, J., Marcos, P.S., Trindade, T., & Labrincha, J.A. (2009). Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles, Journal of Hazardous Materials, 163, 3642.
  • 5
    Xu, X.L., Duan, X., Yi, Z.G., Zhou, Z.W., Fan, X.M., & Wang, Y. (2010). Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light, Catalysis Communications, 12, 169172.
  • 6
    Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T., & Poulios, I. (2008). Photocatalytic degradation and drug activity reduction of Chloramphenicol, Water Research, 42, 386394.
  • 7
    Palominos, R.A., Mondaca, M.A., Giraldo, A., Peñuela, G., Pérez-Moya, M., & Mansilla, H.D. (2009). Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions, Catalysis Today, 144, 100105.
  • 8
    Lu, W.W., Gao, S.Y., & Wang, J.J. (2008). One-Pot Synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance, Journal of Physical Chemistry C, 112, 1679216800.
  • 9
    Ullah, R. & Dutta, J. (2008). Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, Journal of Hazardous Materials, 156, 194200.
  • 10
    Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S., & Huang, C.M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination, Journal of Photochemistry and Photobiology A: Chemistry, 199, 170178.
  • 11
    Lahiri, J. & Batzill, M. (2008). Surface functionalization of ZnO photocatalysts with monolayer ZnS, Journal of Physical Chemistry C, 112, 43044307.
  • 12
    Lin, Y.M., Li, D.Z., Hu, J.H., Xiao, G.C., Wang, J.X., Li, W.J., & Fu, X.Z. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, Journal of Physical Chemistry C, 116, 57645772.
  • 13
    Min, S.X., Wang, F., & Han, Y.Q. (2007). An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites, Journal of Hazardous Materials, 42, 99669972.
  • 14
    Huang, M.R., Lu, H.J., & Li, X.G. (2007). Efficient multicyclic sorption and desorption of lead ions on facilely prepared poly(m-phenylenediamine) particles with extremely strong chemoresistance, Journal of Colloid Interface Science, 313, 7279.
  • 15
    Zhou, H.H., Chen, H., Luo, S.L., Chen, J.H., Wei, W.Z., & Kuang, Y.F. (2004). Preparation and bioelectrochemical responses of the poly(m-phenylenediamine) glucose oxidase electrode, Sensors and Actuators B: Chemistry, 101, 224230.
  • 16
    Berrin, D., Gozen, B., & Murat, D. (2012). Electrochemical synthesis and characterization of poly(m-phenylenediamine) films on copper for corrosion protection, Progress in Organic Coatings, 73, 162168.
  • 17
    Li, X.G., Huang, M.R., Duan, W. & Yang, Y.L. (2002). Novel multifunctional polymers from aromatic diamines by oxidative polymerizations, Chemical Reviews, 102, 29253030.
  • 18
    Lee, S., Jeong, S., Kim, D., Hwang, S., Jeon, M., & Moon, J. (2008). ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis, Superlattices and Microstructures, 43, 330339.
  • 19
    Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., & Avcı, A. (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Applied Catalysis B: Environmental, 119-120, 197206.
  • 20
    Pouget, J.P., Hsu, C.H., MacDiarmid, A.G., & Epstein, A.J. (1995). Structural investigation of metallic PAN-CSA and some of its derivatives, Synthetic Metals, 69, 119120.
  • 21
    Feng, W., Sun, E.H., Fujii, A., Wu, H.C., Nihara, K., & Yoshino K. (2000). Synthesis and Characterization of Photoconducting Polyaniline-TiO2 Nanocomposite, Bulletin of the Chemical Society of Japan, 73, 26272633.
  • 22
    Li, J., Zhu, L.H., Wu, Y.H., Harima, Y., Zhang, A.Q., & Tang, H.Q. (2006). Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization, Polymer, 47,73617367.
  • 23
    Zhang, L.W., Cheng, H.Y., Zong, R.L., & Zhu, Y. F. (2009). Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity, Journal of Physical Chemistry C, 113, 23682374.
  • 24
    Rao, A.N., Sivasankar, B., & Sadasivam, V. (2009). Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst, Journal of Molecular Catalysis A: Chemical, 306, 7781.
  • 25
    Hsin Wu, C. (2009). Photodegradation of C.I. Reactive Red 2 in UV/TiO2-based systems:Effects of ultrasound irradiation, Journal of Hazardous Materials, 167, 434439.