• 1
    Dufaud, V., & Davis, M.E. (2003). Design of heterogeneous catalysts via multiple active site positioning in organic-inorganic hybrid materials, Journal of the American Chemical Society, 12, 94039413.
  • 2
    Kumar, P.S.S., Raj, M.R., & Anandan, S. (2010). Nanoporous Au-TiMCM-41-An inorganic hybrid photocatalyst toward visible photooxidation of methyl orange, Solar Energy Materials and Solar Cells, 94, 17831789.
  • 3
    Lin, B.M., Wang, X.X., Guo, Q., Yang, W., Zhang, Q.H., & Wang, Y. (2003). Excellent catalytic performances of SBA-15-supported vanadium oxide for partial oxidation of methane to formaldehyde, Chemistry Letters, 32, 860861.
  • 4
    Cao, Y., Hu, J.C., Yang, P., Dai, W.L., & Fan, K.N. (2003). CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethylcarbonate, Chemical Communications, 7, 908909.
  • 5
    Fornés, V., López, C., López, H.H., & Martinez, A. (2003). Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde, Applied Catalysis A: General, 249, 345354.
  • 6
    Vradman, L., Landau, M.V., Herskowitz, M., Ezersky, V., Talianker, M., Nikitenko, S., Koltypin, Y., & Gedanken, A. (2003). High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation, Journal of Catalysis, 213, 163175.
  • 7
    Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olsen, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., & Schlenker, J.L. (1992). A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, Journal of the American Chemical Society, 114, 1083410843.
  • 8
    Jarupatrakorn, J., & Tilley, T.D. (2002). Sillica-supported, single site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure, Journal of the American Chemical Society, 124, 83808388.
  • 9
    Scott, B.J., Wirnsberger, G., & Stucky, G.D. (2001). Mesoporous and mesostructured materials for optical applications, Chemistry of Materials, 13, 31403150.
  • 10
    Agger, J.R., Anderson, M.W., Pemble, M.E., Terasaki, O., & Nozue, Y. (1998). Growth of quantum-confined indium phosphide inside MCM-41, Journal of Physical Chemistry B, 102, 33453353.
  • 11
    Souza, F.L., Lopes, K.P., Nascente, P.A.P., & Leite, E.R. (2009). Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting, Solar Energy Materials and Solar Cells, 93, 362368.
  • 12
    Meda, L., Tozzola, G., Tacca, A., Marra, G., Caramori, S., Cristino, V., & Bignozzi, C.A. (2010). Photo-electrochemical properties of nanostructured WO3prepared with different organic dispersing agents, Solar Energy Materials and Solar Cells, 94, 788796.
  • 13
    Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 3738.
  • 14
    Puangpetch, T., Chavadj, S., & Sreethawong, T. (2011). Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effect of molecular structure and chemical properties of hole scavengers, Energy Conversion and Management, 52, 22562261.
  • 15
    Shen, S., & Guo, L. (2006). Structural, textural and photocatalytic properties of quantum-sized In2S3-sensitized Ti-MCM-41 prepared by ion-exchange and sulfidation methods, Journal of Solid State Chemistry, 179, 26292635.
  • 16
    Hirai, T., Nanba, M., & Komasawa, I. (2003). Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties, Journal of Colloid and Interface Science, 268, 394399.
  • 17
    Boudjemaa, A., Bachari, K., & Trari, M. Photo-induced hydrogen evolution on iron hexagonal mesoporous silica (Fe-HMS) Photo-catalyst, International Journal of Energy Research, in press.
  • 18
    Boudjemaa, A., Boumaza, S., Trari, M., Bouarab, R., & Bouguelia, A. (2009). Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production, International Journal of Hydrogen Energy, 34, 42684274.
  • 19
    Boumaza, S., Boudjemaa, A., Bouguelia, A., Bouarab, R., & Trari, M. (2010). Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3, Applied Energy, 87, 22302236.
  • 20
    Belhadi, A., Boumaza, S., & Trari, M. (2011). Photoassited hydrogen production under visible light over NiO/ZnO hetero-system, Applied Energy, 88, 44904495.
  • 21
    Bachari, K., Touileb, A., & Lamouchi, M. (2009). Characterization of iron-mesoporous molecular sieves obtained by a microwave-hydrothermal process, Transition Metal Chemistry, 34, 529537.
  • 22
    Scarano, D., Zecchina, A., Bordiga, S., Geobaldo, F., Spoto, G., Petrini, G., Leofanti, G., Padovan, M., & Tozzola, G. (1993). Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: Stretching-mode region, Journal of the Chemical Society, Faraday Transactions, 89, 41234130.
  • 23
    Younsi, M., Aider, A., Bouguelia, A., & Trari, M. (2005). Visible light-induced hydrogen over CuFeO2 via S2O3−2 oxidation, Solar Energy, 78, 574580.
  • 24
    Boudjemaa, A., Bouarab, R., Saadi, S., Bouguelia, A., & Trari, M. (2009). Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2− solutions (X2− = S2− and SO32−), Applied Energy, 86, 108086.
  • 25
    Frites, M., Shaban, Y.A., & Khan, S.U.M. (2010). Iron oxide (n-Fe2O3) nanowire films and carbon modified (CM)-n-Fe2O3 thin films for hydrogen production by photo splitting of water. International Journal of Hydrogen Energy, 35, 49444948.