SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Urbansky, E.T., & Schock, M.R. (2000). Understanding, Deriving, and Computing Buffer Capacity. Journal of Chemical Communication, 77, 16391644.
  • 2
    Camacho, J., Wee, H., & Timothy. (2009). Arsenic stabilization on water treatment residuals by calcium addition. Journal of Hazardous Materials, 165, 599603.
  • 3
    Lei, X., Sugiura, N., Feng, C., & Maekawa, T. (2007). Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. Journal of Hazardous Materials, 145, 391397.
  • 4
    Lin, Y., Wang, D., Wu, S., & Wang, C. (2009). Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. Journal of Hazardous Materials, 170, 366373.
  • 5
    Cha, G.C., & Noike, T. (1997). Effect of rapid temperature and HRT on anaerobic acidogenesis. Water Science Technology, 36, 247253.
  • 6
    Venkata Mohan, S., Lalit Babu, V., Srikanth, S., & Sarma, P.N. (2008). Bio-electrochemical evaluation of fermentative hydrogen production process with the function of feeding pH. International Journal Hydrogen Energy, 33, 45334536.
  • 7
    Baker-Austin, C., & Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. Trends in Microbiology, 15, 165171.
  • 8
    Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2004). Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 29, 18111823.
  • 9
    Salaun, F., Mietton, B., & Gaucheron, I. (2005). Buffering capacity of dairy products. Dairy Journal, 15, 95109.
  • 10
    Reiger, P.H. (2001). Electrochemistry (2nd Edition), New York: Chapman and Hall.
  • 11
    Kim, J.R., Bruns, M.A., & Logan, B.E. (2008). Removal of odors from swine wastewater by using microbial fuel cells. Applied Environment Microbiology, 74, 25402543.
  • 12
    Fan, Y., Hu, H., & Liu, H. (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science and Technology, 41, 81548158.
  • 13
    Behera, M., & Ghangrekar, M. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 100, 51145121.
  • 14
    Huang, L., & Logan, B.E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology Technology, 80, 349355.
  • 15
    Zhuang, L., Zhou, S.G., Li, Y.T., & Yuan, Y. (2010). Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresource Technology, 101, 35143519.
  • 16
    Veer Raghavulu, S., Venkata Mohan, S., Kanniah Goud, R., & Sarma, P.N. (2009). Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemical Communication, 11, 371375.
  • 17
    Nam, J., Kim, H., Lim, K., Shin, H., & Logan, B.E. (2010). Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosensors and Bioelectronics, 25, 11551159.
  • 18
    Katuri, K.P., Scott, K., Head, I.M., Picioreanu, C., & Curtis, T.M. (2011). Microbial fuel cells meet with external resistance Bioresource. Technology, 102, 27582766.
  • 19
    Liu, H., Cheng, S.A., & Logan, B.E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology, 39, 54885493.
  • 20
    Min, B., Roman, O.B., & Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology Letters, 30, 12131218.
  • 21
    Chang, B.V., Chiang, C.W., & Yuan, S.Y. (1998). Microbial dechlorination of three PCB congeners in river sediment. Chemosphere, 36, 537545.
  • 22
    Venkata Mohan, S., & Chandrasekhar, K. (2011). Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 102, 95329541.
  • 23
    Zhang, L., Li, C., Ding, L., Xu, K., & Ren, H. J. (2011). Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. Journal of Chemical Technology and Biotechnology, 86, 12261232.
  • 24
    Jadhav, G.S., & Ghangrekar, M.M. (2008). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100, 717723.
  • 25
    APHA, Standard methods for the examination of water and wastewater. American Public Health Association. 20th ed. Washington DC: (1998).
  • 26
    Van Slyke, D.D. (1922). On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. Journal of Biology Chemistry, 52, 525570.
  • 27
    Velvizhi, G., & Venkata Mohan, S. (2011). Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresource Technology, 102, 1078410793.
  • 28
    Ren, Z.Y., Ward, T.E., & Regan, J.M. (2007). Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science Technology, 41, 47814786.
  • 29
    Behera, M., Partha, S., Jana, T., Tanaji, M., & Ghangrekar, M. (2010). Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry, 79, 228233.
  • 30
    Torres, C., Soollee, H., & Rittmann, B. (2008). Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environmental Science Technology, 42, 87738777.
  • 31
    Venkata Mohan, S., & Chandrasekhar, K. (2011). Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology, 102, 70777085.
  • 32
    Venkata Mohan, S., Veer Raghavulu, S., Dinakar, P., & Sarma, P.N. (2009). Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosensors and Bioelectronics, 24, 20212027.
  • 33
    Velvizhi, G., & Venkata Mohan, S. (2012). Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. International Journal Hydrogen Energy, 37, 59695978.
  • 34
    Rozendal, R.A., Hamelers, H.V.M., & Buisman, C.J.N. (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science and Technology, 40, 52065211.
  • 35
    Luo, H., Xu, P., Roane, T.M., Jenkins, P.E., & Ren, Z. (2012). Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresource Technology, 105, 6066.