Preparation of carbon sphere from lactose by hydrothermal reaction and its performance in gas separation



Carbon spheres were produced from mild hydrothermal reaction of biomass lactose, followed by carbonization with low-activation temperatures (400°C). The Brunauer-Emmett-Teller (BET)-specific surface area of carbon at optimum condition was 403 m2/g. The resultant carbon shows good performance in preferential adsorption of CO2 to CH4 below 50 kPa at 293 K. The results of the isosteric enthalpies of adsorption for different gases on prepared carbon indicate mildly heterogeneous surfaces. The relatively good performance of the resultant carbon in kinetics indicates its potential for low-pressure kinetic separation of carbon dioxide from carbon dioxide and methane mixture at room temperature.. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 581–587, 2014