SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Chisti, Y. (2007). Biodiesel from microalgae, Biotechnology Advances, 25, 294306.
  • 2
    Williams, P.J.B. & Laurens, L.M.L. (2010). Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetics and economics, Energy and Environmental Science, 3, 554590.
  • 3
    Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp., Applied Microbiology and Biotechnology, 90, 14291441.
  • 4
    Doan, T.T.Y., Sivaloganathan, B., & Obbard, J.P. (2011). Screening of marine microalgae for biodiesel feedstock, Biomass and Bioenergy, 35, 25342544.
  • 5
    Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production, BioEnergy Research, 1, 2043.
  • 6
    Griffiths, M. & Harrison, S. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production, Journal of Applied Phycology, 21, 493507.
  • 7
    Delrue, F., Setier, P.A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G., & Froment, A.K. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae, Bioresource Technology, 111, 191200.
  • 8
    Savage, N. (2011). Algae: The scum solution, Nature, 474, 1516.
  • 9
    Pittman, J.K., Dean, A.P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources, Bioresource Technology, 102, 1725.
  • 10
    Shimamatsu, H. (2004). Mass production of Spirulina, an edible alga, Hydrobiologia, 512, 3944.
  • 11
    Jiang, L., Luo, S., Fan, X., Yang, Z., & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Applied Energy, 88, 33363341.
  • 12
    Shehata, S.A., Lasheen, M.R., Ali, G.H., & Kobbia, I.A. (1999). Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae, Water, Air, and Soil Pollution, 110, 119135.
  • 13
    Kleinegris, D., Es, M.A., Janssen, M., Brandenburg, W.A., & Wijffels, R.H. (2010). Carotenoid fluorescence in Dunaliella salina, Journal of Applied Phycology, 22, 645649.
  • 14
    Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol, Metabolic Engineering, 12, 387391.
  • 15
    Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae, Bioresource Technology, 101, 58925896.
  • 16
    Weis, J.J., Madrigal, D.S., & Cardinale, B.J. (2008). Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: A microcosm experiment, PLoS One, 3, e2825. doi: 10.1371/journal.pone.0002825.
  • 17
    Hsieh, C.H. & Wu, W.T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation, Bioresource Technology, 100, 39213926.
  • 18
    Widjaja, A., Chien, C.-C., & Ju, Y.-H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, Journal of the Taiwan Institute of Chemical Engineers, 40, 1320.
  • 19
    Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme and Microbial Technology, 27, 631635.
  • 20
    Gouveia, L., Marques, A., da Silva, T., & Reis, A. (2009). Neochloris oleabundans UTEX #1185: A suitable renewable lipid source for biofuel production, Journal of Industrial Microbiology and Biotechnology, 36, 821826.
  • 21
    Tang, H., Abunasser, N., Garcia, M.E.D., Chen, M., Simon Ng, K.Y., & Salley, S.O. (2011). Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel, Applied Energy, 88, 33243330.
  • 22
    Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing: Process Intensification, 48, 11461151.
  • 23
    Gamfeldt, L. & Hillebrand, H. (2011). Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales, PLoS One, 6, e21972. doi: 10.1371/journal.pone.0021972.
  • 24
    Sydney, E.B., da Silva, T.E., Tokarski, A., Novak, A.C., de Carvalho, J.C., Woiciecohwski, A.L., Larroche, C., & Soccol, C.R. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage, Applied Energy, 88, 32913294.
  • 25
    Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the US Department of Energy's aquatic species program-biodiesel from algae, National Renewable Energy Laboratory. NREL/TP-580-24190.
  • 26
    Richmond, A. (2004). Handbook of microalgal culture, Oxford: Blackwell Publishing.
  • 27
    Ren, M. & Ogden, K.L. Cultivation of Nannochloropsis gaditana on mixtures of nitrogen sources, Environmental Progress and Sustainable Energy, doi: 10.1002/ep.11818.
  • 28
    Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W.L. Smith & M.H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 2960), New York: Plenum Book Publishing Corporation.
  • 29
    Wellbum, A.R. (1994). The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, Journal of Plant Physiology, 144, 307313.
  • 30
    Wood, E.R. & Wingard, L.M. (2005). Measuring growth rates in microalgal cultures. In R.A. Andersen (Ed.), Algal culturing techniques (270p), Burlington, MA: Elsevier Academic Press.
  • 31
    Bligh, E.G. & Dyer, W.J. (1959). A rapid method for total lipid extraction and purification, Canadian Journal of Biochemistry and Physiology, 37, 911917.
  • 32
    Liu, H.B., Chen, T.H., Chang, D.Y., Chen, D., Liu, Y., He, H. P., Yuan, P., & Frost, R. (2012). Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite, Materials Chemistry and Physics, 133, 205211.
  • 33
    Liu, J., Mukherjee, J., Hawkes, J.J., & Wilkinson, S.J. (2013). Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis, Journal of Chemical Technology and Biotechnology, 88, 18071814.
  • 34
    Dean, A.P., Sigee, D.C., Estrada, B., & Pittman, K.J. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae, Bioresource Technology, 101, 44994507.
  • 35
    Murdock, J. & Wetzel, D.L. (2009). FT-IR microspectroscopy enhances biological and ecological analysis of algae, Applied Spectroscopy Reviews, 44, 335361.
  • 36
    Collier, J.L. & Grossman, A.R. (1992). Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same, Journal of Bacteriology, 174, 47184726.
  • 37
    Sinclair, G., Kamykowski, D., & Glibert, P.M. (2009). Growth, uptake, and assimilation of ammonium, nitrate, and urea, by three strains of Karenia brevis grown under low light, Harmful Algae, 8, 770780.
  • 38
    Ashraf, M., Javaid, M., Rashid, T., Ayub, M., Zafar, A., & Ali, S. (2011). Replacement of expensive pure nutritive media with low cost commercial fertilizers for mass culture of freshwater algae, Chlorella vulgaris, International Journal of Agriculture and Biology, 13, 484490.
  • 39
    Anderson, D.B., Molten, P.M., & Metting, B. (1981). Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops (5p), Richland: Pacific Northwest Laboratory.
  • 40
    Witte, C.P. (2011). Urea metabolism in plants, Plant Science, 180, 431438.
  • 41
    Danesi, E.D.G., de, O., Rangel-Yagui, C., de Carvalho, J.C.M., & Sato, S. (2002). An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis, Biomass and Bioenergy, 23, 261269.
  • 42
    Pustizzi, F., MacIntyre, H., Warner, M.E., & Hutchins, D.A. (2004). Interaction of nitrogen source and light intensity on the growth and photosynthesis of the brown tide alga Aureococcus anophagefferens, Harmful Algae, 3, 343360.
  • 43
    Solomon, C.M., Collier, J.L., Berg, G.M., & Glibert, P.M. (2010). Role of urea in microbial metabolism in aquatic systems: A biochemical and molecular review, Aquatic Microbial Ecology, 59, 6788.
  • 44
    Wang, W.H., Köhler, B., Cao, F.Q., & Liu, L.H. (2008). Molecular and physiological aspects of urea transport in higher plants, Plant Science, 175, 467477.
  • 45
    Huerlimann, R., de Nys, R., & Heimann, K. (2010). Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production, Biotechnology and Bioengineering, 107, 245257.