SEARCH

SEARCH BY CITATION

Keywords:

  • hysteretic behaviour;
  • strength deterioration;
  • cyclic deterioration;
  • collapse

Abstract

This paper presents the description, calibration and application of relatively simple hysteretic models that include strength and stiffness deterioration properties, features that are critical for demand predictions as a structural system approaches collapse. Three of the basic hysteretic models used in seismic demand evaluation are modified to include deterioration properties: bilinear, peak-oriented, and pinching. The modified models include most of the sources of deterioration: i.e. various modes of cyclic deterioration and softening of the post-yielding stiffness, and also account for a residual strength after deterioration. The models incorporate an energy-based deterioration parameter that controls four cyclic deterioration modes: basic strength, post-capping strength, unloading stiffness, and accelerated reloading stiffness deterioration. Calibration of the hysteretic models on steel, plywood, and reinforced-concrete components demonstrates that the proposed models are capable of simulating the main characteristics that influence deterioration. An application of a peak-oriented deterioration model in the seismic evaluation of single-degree-of-freedom (SDOF) systems is illustrated. The advantages of using deteriorating hysteretic models for obtaining the response of highly inelastic systems are discussed. Copyright © 2005 John Wiley & Sons, Ltd.