Get access

Dynamic simulation of air storage–based gas turbine plants

Authors


Correspondence: Siddhartha Kumar Khaitan, Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.

E-mail: siddhartha.khaitan@gmail.com

SUMMARY

Cavern storage is a proven energy storage technology, capable of storing energy in the form of compressed air inside a cavern. The Huntorf plant and the Alabama plants use this technology to store electrical energy during the off-peak load hours by compressing the air inside a cavern and then using this compressed air during gas turbine operation to generate electricity during peak load demand hours. The advantage of doing this is that it increases the efficiency of gas turbine operation while meeting the grid generation and the load balance. The operation of a typical compressed air energy storage (CAES)–based gas turbine plant involves the operation of several components, including the compressor, the cavern storage, the combustor, the turbine, and so on. The dynamics of the plant as a whole depends on the performance of the individual components. The focus of this article is to develop a Simulink-based models for each of the individual components, which can then be assembled appropriately to design an entire CAES plant. As an illustration, a case study for the Huntorf CAES plant is presented with the developed models. A typical daily operation of the Huntorf plant is simulated and compared with the reported Huntorf plant data. The model accurately captures the reported dynamics of the cavern storage. In addition, the reported quantities like the compressor power consumption, the turbine power generation, and the temperature at different junctions of the CAES plant match well with the simulated results. Copyright © 2011 John Wiley & Sons, Ltd.

Ancillary