• 1
    Serrano-Ruiz, J. C., R. Luque, J. M. Campelo, and A. A. Romero. 2012. Continuous-flow processes in heterogeneously catalyzed transformations of biomass derivatives into fuels and chemicals. Challenges 3:114132.
  • 2
    Glasnov, T. N., and C. O. Kappe. 2011. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem. Eur. J. 17:1195611968.
  • 3
    PBL Netherland Environmental Assessment Agency. Trends in global CO2 emissions. (accessed 15 March 2013).
  • 4
    Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848889.
  • 5
    Heo, H. S., H. J. Park, Y.-K. Park, C. Ryu, D. J. Suh, Y.-W. Suh, et al. 2010. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour. Technol. 101:S91S96.
  • 6
    Cho, M.-H., S.-H. Jung, and J.-S. Kim. 2009. Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24:13891395.
  • 7
    Kantarelis, E., and A. Zabaniotou. 2009. Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture. Bioresour. Technol. 100:942947.
  • 8
    Luque, R., J. A. Menendez, A. Arenillas, and J. Cot. 2012. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy Environ. Sci. 5:54815488.
  • 9
    Wulff, N., H. Carrer, and S. Pascholati. 2006. Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr. Microbiol. 53:198203.
  • 10
    Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:8689.
  • 11
    Gustavsson, L., P. Börjesson, B. Johansson, and P. Svenningsson. 1995. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy 20:10971113.
  • 12
    Lee, S. W., T. Herage, and B. Young. 2004. Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel. Fuel 83:16071613.
  • 13
    Gielen, D. J, A. J. M. Bos, M. A. R. C. de Feber, and T. Gerlagh. Biomass for greenhouse gas emission reduction. (accessed 15 March 2013).
  • 14
    Gustavsson, L., J. Holmberg, V. Dornburg, R. Sathre, T. Eggers, K. Mahapatra, et al. 2007. Using biomass for climate change mitigation and oil use reduction. Energy Policy 35:56715691.
  • 15
    Chen, K., H. Zhang, Y. Miao, M. Jiang, and J. Chen. 2010. Succinic acid production from enzymatic hydrolysate of sake lees using Actinobacillus succinogenes 130Z. Enzyme Microb. Technol. 47:236240.
  • 16
    Oliveira, L. S., and S. F. Adriana. 2009. From solid biowastes to liquid biofuels. Agriculture Issues and Policies Series: 265. Available at: (accessed May 2013).
  • 17
    Toledano, A., L. Serrano, A. M. Balu, R. Luque, A. Pineda, and J. Labidi. 2013. Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds. ChemSusChem 6:529536.
  • 18
    Du, C., J. Sabirova, W. Soetaert, and C. S. K. Lin. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6:1425.
  • 19
    Balu, A. M., V. Budarin, P. S. Shuttleworth, L. A. Pfaltzgraff, K. Waldron, R. Luque, et al. 2012. Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. ChemSusChem 5:16941697.
  • 20
    Au, E. 2013. Food waste management and practice in Hong Kong in Commercial and Industrial (C&I) Food Waste Recycling Seminar, 8 February 2013, Food Education Association, The Hong Kong Polytechnic University, Hong Kong.
  • 21
    Zhang, R., H. M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, et al. 2006. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98:929935.
  • 22
    Russ, W., and R. Meyer-Pittroff. 2004. Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 44:5762.
  • 23
    Kornegay, E. T., G. W. Vander Noot, K. M. Barth, W. S. MacGrath, J. G. Welch, and E. D. Purkhiser. 1965. Nutritive value of garbage as a feed for swine. I. Chemical composition, digestibility and nitrogen utilization of various types of garbage. J. Anim. Sci. 24:319324.
  • 24
    Westendorf, M. L. 1996. Pp. 2432 in The use of food waste as a feedstuff in swine diets. Proceeding of Food Waste Recycling Symp. Rutgers Coop. Ext., Rutgers Univ.-Cook College, New Brunswick, NJ.
  • 25
    Grolleaud, M. 2002. Post-harvest losses: discovering the full story. Overview of the phenomenon of losses during the post-harvest system. FAO, Agro Industries and Post-Harvest Management Service, Rome, Italy.
  • 26
    Parfitt, J., M. Barthel, and S. Macnaughton. 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365:30653081.
  • 27
    Gustavsson, J., C. Cederberg, U. Sonesson, R. van Otterdijk, and A. Meybeck. 2011. Global food losses and food waste: extent, causes and prevention. FAO, Rome, Italy.
  • 28
    Tatsi, A., and A. Zouboulis. 2002. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res. 6:207219.
  • 29
    EPD (Environmental Protection Department of HKSAR). Monitoring of solid waste in Hong Kong 2011. (accessed October 2012).
  • 30
    Abu-Rukah, Y., and O. Al-Kofahi. 2001. The assessment of the effect of landfill leachate on ground-water quality—a case study El-Akader landfill site-north Jordan. J. Arid Environ. 49:615630.
  • 31
    Pfaltzgraff, L. A., M. De bruyn, E. C. Cooper, V. Budarin, and J. H. Clark. 2013. Food waste biomass: a resource for high-value chemicals. Green Chem. 15:307314.
  • 32
    Toledano, A., L. Serrano, J. Labidi, A. Pineda, A. M. Balu, and R. Luque. 2013. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents. ChemCatChem 5:977985.
  • 33
    Toledano, A., L. Serrano, and J. Labidi. 2012. Process for olive tree pruning lignin revalorisation. Chem. Eng. J. 193–194:396403.
  • 34
    Toledano, A., L. Serrano, A. Pineda, A. A. Romero, J. Labidi, and R. Luque. 2013. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl. Catal. B. doi: 10.1016/j.apcatb.2012.10.015
  • 35
    Llorach, R., J. C. Espín, F. A. Tomás-Barberán, and F. Ferreres. 2003. Valorization of cauliflower (Brassica oleracea L. var. botrytis) by-products as a source of antioxidant phenolics. J. Agric. Food Chem. 51:21812187.
  • 36
    González-Sáiz, J. M., C. Pizarro, I. Esteban-Díez, O. Ramírez, C. J. González-Navarro, M. J. Sáiz-Abajo, et al. 2007. Monitoring of alcoholic fermentation of onion juice by NIR spectroscopy: valorization of worthless onions. J. Agric. Food Chem. 55:29302936.
  • 37
    Dong, L.-M., X.-P. Yan, Y. Li, Y. Jiang, S.-W. Wang, and D.-Q. Jiang. 2004. On-line coupling of flow injection displacement sorption preconcentration to high-performance liquid chromatography for speciation analysis of mercury in seafood. J. Chromatogr. A 1036:119125.
  • 38
    Cheng, Y., L. Fan, H. Chen, X. Chen, and Z. Hu. 2005. Method for on-line derivatization and separation of aspartic acid enantiomer in pharmaceuticals application by the coupling of flow injection with micellar electrokinetic chromatography. J. Chromatogr. A 1072:259265.
  • 39
    de Boer, A. R., T. Letzel, D. A. van Elswijk, H. Lingeman, W. M. Niessen, and H. Irth. 2004. On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrometry. Anal. Chem. 76:31553161.
  • 40
    Stewart, J. J., T. Akiyama, C. Chapple, J. Ralph, and S. D. Mansfield. 2009. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol. 150:621635.
  • 41
    Sahu, R., and P. L. Dhepe. 2012. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5:751761.
  • 42
    Chakraborty, R., S. Bepari, and A. Banerjee. 2010. Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem. Eng. J. 165:798805.
  • 43
    Fu, B., L. Gao, L. Niu, R. Wei, and G. Xiao. 2009. Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42−/ZrO2. Energy Fuels 23:569572.
  • 44
    Clark, J. H., V. Budarin, T. Dugmore, R. Luque, D. J. Macquarrie, and V. Strelko. 2008. Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal. Commun. 9:17091714.
  • 45
    Luque, R., A. Pineda, J. C. Colmenares, J. M. Campelo, A. A. Romero, J. C. Serrano-Ruiz, et al. 2012. Carbonaceous residues from biomass gasification as catalysts for biodiesel production. J. Nat. Gas Chem. 21:246250.
  • 46
    Abbot, A. P., R. C. Harris, K. S. Ryder, C. D′Agostino, L. F. Gladden, and M. D. Mantle. 2011. Glycerol eutectics as sustainable solvent systems. Green Chem. 13:8290.
  • 47
    Carriazo, D., M. C. Serrano, M. C. Gutierrez, M. L. Ferrer, and F. del Monte. 2012. Deep eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41:49965014.
  • 48
    Zhang, Q., K. De Oliveira Vigier, S. Royer, and F. Jerome. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41:7108.
  • 49
    Russ, C., and B. König. 2012. Low melting mixtures in organic synthesis- an alternative to ionic liquids? Green Chem. 14:29692982.
  • 50
    Serrano-Ruiz, J. C., J. M. Campelo, M. Francavilla, C. Menendez, A. B. Garcia, A. A. Romero, et al. 2012. Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catal. Sci. Technol. 2:18281832.
  • 51
    Zhang, Z., Q. Wang, H. Xie, W. Liu, and Z. K. Zhao. 2011. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium (IV) chloride in ionic liquids. ChemSusChem 4:131138.
  • 52
    Colmenares, J. C., R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński, and A. A. Romero. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials 2:22282258.
  • 53
    Stillings, R. A., and R. J. V. Nostrand. 1944. The action of ultraviolet light upon cellulose. I. Irradiation effects. II. Post-irradiation effects1. J. Am. Chem. Soc. 66:753760.
  • 54
    Ai, Z., W. Ho, and S. Lee. 2011. Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites. J. Phys. Chem. 115:2533025337.
  • 55
    Ismail, A. A., and D. W. Bahnemann. 2011. Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. 115:57845791.
  • 56
    Bernardo, E. C. 2008. Solid-waste management practices of households in Manila, Philippines. Ann. NY Acad. Sci. 1140:420424.
  • 57
    Office of the Chief Executive. 2013. Policy Address, 2013 (Office of the Chief Executive). The Hong Kong Government Special Administrative Region (HKSAR), Hong Kong. Available at (accessed 16 January 2013).
  • 58
    Takata, M., K. Fukushima, N. Kino-Kimata, N. Nagao, C. Niwa, and T. Toda. 2012. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling. Sci. Total Environ. 432:309317.
  • 59
    Bernstad, A., and J. la Cour Jansen. 2012. Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective. Waste Manage. (Oxford) 32:806815.
  • 60
    Zhang, B., L.-L. Zhang, S.-C. Zhang, H.-Z. Shi, and W.-M. Cai. 2005. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 26:329340.
  • 61
    Zhang, A. Y., Z. Sun, C. C. J. Leung, W. Han, K. Y. Lau, M. Li, et al. 2013. Valorisation of bakery waste for succinic acid production. Green Chem. 15:690695.
  • 62
    Van-Thuoc, D., J. Quillaguamán, G. Mamo, and B. Mattiasson. 2008. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J. Appl. Microbiol. 104:420428.
  • 63
    Du, C., S. K. C. Lin, A. Koutinas, R. Wang, P. Dorado, and C. Webb. 2008. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol. 99:83108315.
  • 64
    Dorado, M. P., S. K. C. Lin, A. Koutinas, C. Du, R. Wang, and C. Webb. 2009. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 143:5159.
  • 65
    Lin, C. S. K., R. Luque, J. H. Clark, C. Webb, and C. Du. 2012. Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels Bioprod. Biorefin. 6:88104.
  • 66
    Leung, C. C. J., A. S. Y. Cheung, A. Y.-Z. Zhang, K. F. Lam, and C. S. K. Lin. 2012. Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 65:1015.
  • 67
    García, I. L., J. A. López, M. P. Dorado, N. Kopsahelis, M. Alexandri, S. Papanikolaou, et al. 2013. Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour. Technol. 130:1622.
  • 68
    Delgado, R., A. J. Castro, and M. Vázquez. 2009. A kinetic assessment of the enzymatic hydrolysis of potato (Solanum tuberosum). LWT Food Sci. Technol. 42:797804.
  • 69
    Yu, J., Z. Li, Q. Ye, Y. Yang, and S. Chen. 2010. Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J. Ind. Microbiol. Biotechnol. 37:10331040.
  • 70
    Chen, K., H. Zhang, Y. Miao, P. Wei, and J. Chen. 2011. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb. Technol. 48:339344.
  • 71
    Wang, R., L. C. Godoy, S. M. Shaarani, M. Melikoglu, A. Koutinas, and C. Webb. 2009. Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme Microb. Technol. 44:223228.
  • 72
    Li, Q., J. Siles, and I. Thompson. 2010. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl. Microbiol. Biotechnol. 88:671678.
  • 73
    Quillaguamán, J., R. Hatti-Kaul, B. Mattiasson, M. T. Alvarez, and O. Delgado. 2004. Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54:721725.
  • 74
    Van-Thuoc, D., H. Guzmán, J. Quillaguamán, and R. Hatti-Kaul. 2010. High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J. Biotechnol. 147:4651.
  • 75
    Arancon, R. A., H. R. Barros Jr., A. M. Balu, C. Vargas, and R. Luque. 2011. Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils. Green Chem. 13:31623167.
  • 76
    Cabeza, L., M. M. Taylor, G. L. DiMaio, E. Brown, W. N. Marmer, R. Carrió, et al. 1998. Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Manage. (Oxford) 18:211218.
  • 77
    Gelse, K., E. Pöschl, and T. Aigner. 2003. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:15311546.
  • 78
    Mata, T. M., A. A. Martins, and N. S. Caetano. 2013. Valorization of waste frying oils and animal fats for biodiesel production. Pp. 671693 in J. W. Lee, ed. Advanced biofuels and bioproducts. Springer, The Netherlands.
  • 79
    Reis, R. L., N. M. Neves, J. F. Mano, M. E. Gomes, A. P. Marques, and H. S. Azevedo. 2008. Natural based polymers for biomedical applications. Woodhead Publishing, CRC Press, Cambridge, U.K.
  • 80
    Catalina, M., J. Cot, M. Borras, J. de Lapuente, J. González, A. M. Balu, et al. 2013. From waste to healing biopolymers: biomedical applications of bio-collagenic materials extracted from industrial leather residues in wound healing. Materials 6:15991607.
  • 81
    Catalina, M., J. Cot, M. Borras, J. de Lapuente, J. González, A. M. Balu, et al. 2013. From waste to healing biopolymers: biomedical applications of bio-collagenic materials extracted from industrial leather residues in wound healing. Materials 6:15991607.
  • 82
    Langmaier, F., P. Mokrejs, R. Karnas, M. Mládek, and K. Kolomazník. 2006. Modification of chrome-tanned leather waste hydrolysate with epichlorhydrin. J. Soc. Leather Technol. Chem. 90:2934.
  • 83
    Brown, E., C. Thompson, and M. M. Taylor. 1994. Molecular size and conformation of protein recovered from chrome shavings. J. Am. Leather Chem. Assoc. 89:215220.
  • 84
    Yu, J., Y. Hai, and B. Cheng. 2011. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J. Phys. Chem. C 115:49534958.
  • 85
    Liang, Y. T., B. K. Vijayan, K. A. Gray, and M. C. Hersam. 2011. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 11:28652870.
  • 86
    Polshettiwar, V., R. Luque, A. Fihri, H. Zhu, M. Bouhrara, and J. M. Basset. 2011. Magnetically recoverable nanocatalysts. Cheminform 42:30363075.
  • 87
    Liu, J., S. Z. Qiao, Q. H. Hu, and G. Q. Lu. 2011. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425443.
  • 88
    Daskalaki, V. M., M. Antoniadou, G. Li Puma, D. I. Kondarides, and P. Lianos. 2010. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 44:72007205.
  • 89
    Balu, A. M., B. Baruwati, E. Serrano, J. Cot, J. Garcia-Martinez, R. S. Varma, et al. 2011. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chem. 13:27502758.