Get access

Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon



Soil erosion, transport and deposition by water drastically affect the distribution of soil organic carbon (SOC) within a landscape. Moreover, soil redistribution may have a large impact on the exchange of carbon (C) between the pedosphere and the atmosphere. One of the large information gaps within this research domain, concerns the fate of SOC after erosion by water. According to different (mainly laboratory) studies, soil redistribution leads to aggregate breakdown, thereby exposing the contained SOC to mineralization.

Our study aims to quantify the extent to which such increased mineralization occurs in a real field situation. Carbon dioxide (CO2)-efflux was measured in the field after an important erosion event for a continuous period of 112 days. The specific situation on the field ensured that almost none of eroded SOC was exported from the field. Measurements of CO2-efflux were done in areas with sediment deposition, as well as in comparable areas without sedimentation. Comparison of these measurements allowed the net effect of soil deposition on CO2-efflux to be assessed. Field data were complemented by measurements on incubated, undisturbed soil core samples, in order to disentangle the contribution of environmental factors (moisture, temperature) from any erosional effect on CO2-efflux.

Results of these measurements on the field showed that CO2-efflux was regulated by a complex interplay of different factors (mostly soil porosity, soil moisture and soil temperature).

In combination with the incubation measurements, it could be concluded that the processes of erosion and transport indeed led to an increased mineralization of SOC, as a result of aggregate breakdown and exposure of previously encapsulated SOC. This effect was, however, much smaller than observed in previous laboratory studies. Moreover, it was only important in the first weeks, immediately after the erosion event. The calculated net erosional effect on CO2-efflux represented a mere 1·6% of total SOC, originally present in the soil. Copyright © 2010 John Wiley & Sons, Ltd.