SEARCH

SEARCH BY CITATION

Keywords:

  • river meanders;
  • channel morphology;
  • erosion;
  • deposition;
  • channel change

Abstract

This paper analyses types and rates of change in river meander morphology and the links between mechanisms of change and emergent behaviour of planform morphology. It uses evidence of four dates of aerial photography combined with annual field mapping and ground photography to examine the morphological changes and mechanisms of change in a series of bends on an active meandering river, the River Dane in NW England, over a 25 year period. This unique data set allows insight into the spatial and temporal variability of bank line movement and component processes. Bank lines were mapped photogrametrically from air photos of 1984, 1996, 2001 and 2007 and the digitised courses compared in ArcGIS to produce calculations of erosional and depositional areas and rates. Most bends exhibit morphological change that largely follows the autogenic sequence, identified in qualitative models of meander development, from low sinuosity curves through simple symmetric and asymmetric bends to compound forms with lobe development in the apex region. Rates of erosion and bankline movement increase through this sequence until the compound phase. Relationships of amounts of movement to various curvature measures of bend morphology are complex. Several new loops, distinct from compound bend behaviour, have developed during the study period in formerly straight sections. Mechanisms of morphological change are illustrated for four types of bends: new, rapid growth bend; sharp-angled bend with mid-channel bar development; symmetric migrating bend; and simple to compound bend development. The changes take place in phases that are not simply related to discharge but to inherent sequences and feedbacks in development of bars and bend morphology and timescales for these are identified. Overall, emergent behaviour of systematic planform change, moderated by channel confinement and boundary features, is produced from spatially and temporally varied channel processes. Copyright © 2010 John Wiley & Sons, Ltd.