Hydraulic conductivity in frozen soils



An apparatus has been developed for investigation of hydraulic conductivity of frozen soils. The test procedure is isothermal and involves the passage of water from one reservoir into the frozen sample and out of the frozen sample into a second reservoir. The water in the reservoirs remains unfrozen because it contains dissolved lactose. The concentration of lactose is such that, initially, the water in the reservoirs is in thermodynamic equilibrium with the water in the soil. On application of pressure to one reservoir a known hydraulic gradient is established and flow takes place. Flow is shown to vary linearly with hydraulic gradient. The hydraulic conductivity coefficient depends on soil type and temperature and is related to the unfrozen water content. At temperatures within a few tenths of 0°C the coefficient apparently ranges from 10−5 to 10−9 cm sec−1, and decreases only slowly below about −0·5°C. Soils known to be susceptible to frost heave are shown to have significant hydraulic conductivities well below 0°C.