• 1
    Pagenkopf GK. 1983. Gill surface interaction model for trace-metal toxicity to fish: Role of complexation, pH, and water hardness. Environ Sci Technol 17: 342347.
  • 2
    Erickson RJ, Benoit DA, Mattson VR, Nelson HP, Leonard EN. 1996. The effects of water chemistry on the toxicity of copper to fathead minnows. Environ Toxicol Chem 15: 181193.
  • 3
    Welsh PG, Lipton J, Chapman GA, Podrabsky TL. 2000. Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environ Toxicol Chem 19: 16241631.
  • 4
    Meador JP. 1991. The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquat Toxicol 19: 1331.
  • 5
    Alabaster JS, Lloyd R. 1980. Water Quality Criteria for Freshwater Fish. Butterworth Scientific, London, UK.
  • 6
    U.S. Environmental Protection Agency. 1986. Quality Criteria for Water–1986. EPA 440/5-86-001. Washington, DC.
  • 7
    U.S. Environmental Protection Agency. 1994. Interim Guidance on Determination and use of Water Effects Ratio (WERs) for Metals. EPA/823/B-94/001. Washington, DC.
  • 8
    Reiley MC. 2007. Science, policy, and trends of metals risk assessment at EPA: How understanding metal bioavailability has changed metal risk assessment at US EPA. Aquat Toxicol 84: 292298.
  • 9
    Paquin PR, Gorsuch JW, Apte S, Batley SA, Bowels KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RY, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB. 2002. The biotic ligand model—A historical overview. Comp Biochem Physiol C 133: 335.
  • 10
    Di Toro MD, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20: 23832396.
  • 11
    Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS. 2001. Biotic ligand model of the acute toxicity of metals. 2. Application to acute toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20: 23972402.
  • 12
    Santore RC, Driscoll CT. 1995. The CHESS model for calculating chemical equilibria in soils and solution. In Loeppert R, Schwab AP, Goldberg S, eds, Chemical Equilibrium and Reaction Models. SSSA Special Publication, 42 ed. The Soil Society of America, American Society of Agronomy, Madison, WI, USA, pp 357375.
  • 13
    Tipping E, Hurley M. 1992. A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 27: 520529.
  • 14
    Tipping E. 1994. WHAM—A chemical equilibrium model and computer code for waters, sediments and solids incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20: 9731023.
  • 15
    U.S. Environmental Protection Agency. 2007. Framework for Metal Risk Assessment. EPA 120/R-07/001. Washington, DC.
  • 16
    Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand. 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra, Australia.
  • 17
    Bass JAB, Blust R, Clarke RT, Corbin TA, Davison W, De Schamphelaere KAC, Janssen CR, Kalis EJJ, Kelly MG, Kneebone NT, Lawlor AJ, Lofts S, Temminghoff EJM, Thacker SA, Tipping E, Vincent CD, Warnken KW, Zhang H. 2008. Environmental quality standards for trace metals in the aquatic environment. SC030194. Science Report. Environment Agency, Bristol, UK.
  • 18
    Comber SDW, Merrington G, Sturdy L, Delbeke K, van Assache F. 2008. Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the level of failure. Sci Total Environ 403: 1222.
  • 19
    Hall LW, Anderson RD, Lewis BL, Arnold WR. 2008. The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis. Arch Environ Contam Toxicol 54: 4456.
  • 20
    Grosell M, Blanchard J, Brix KV, Gerdes R. 2007. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84: 162172.
  • 21
    Martins De Martinez Gaspar C, Barcarolli IF, de Menezes EJ, Giacomin MM, Wood CM, Bianchini A. 2011. Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities: In vivo and in vitro studies. Aquat Toxicol 101: 8899.
  • 22
    Blanchard J, Grosell M. 2006. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities? Aquat Toxicol 80: 131139.
  • 23
    Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 18061809.
  • 24
    Brooks S, Waldock M. 2009. Copper biocides in marine environment. In Arai T, Harino H, Ohji M, Langston WJ, eds, Ecotoxicology of Antifouling Biocides, Vol 3. Springer, Tokyo, Japan, pp 413428.
  • 25
    Jones B, Bolam T. 2007. Copper speciation survey from UK marinas, harbours and estuaries. Mar Pollut Bull 54: 11271138.
  • 26
    Tipping E. 1993. Modeling the competition between alkaline-earth cations and trace-metal species for binding by humic substances. Environ Sci Technol 3: 520529.
  • 27
    Middelburg JJ, Herman PMJ. 2007. Organic matter processing in tidal estuaries. Mar Chem 106: 127147.
  • 28
    Ryan AC, Van Genderen EJ, Tomasso JR, Klaine SJ. 2004. Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): Implications for the biotic ligand model. Environ Toxicol Chem 23: 15671574.
  • 29
    Ryan AC, Tomasso JR, Klaine SJ. 2009. Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: Implications for the biotic ligand model. Environ Toxicol Chem 28: 16631670.
  • 30
    Al-Reasi H, Wood CM, Smith DS. 2011. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota. Aquat Toxicol 103: 179190.
  • 31
    DePalma SGS, Arnold WR, McGeer JC, Dixon DG, Smith DS. 2011. Variability in dissolved organic matter fluorescence and reduced sulfur concentration in coastal marine and estuarine environments. Appl Geochem 26: 394404.
  • 32
    Depalma SGS, Arnold WR, McGeer JC, Dixon DG, Smith DS. 2011. Effects of dissolved organic matter and reduced sulphur on copper bioavailability in coastal marine environments. Ecotoxicol Environ Saf 74: 230237.
  • 33
    De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR. 2004. Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23: 12481255.
  • 34
    Tipping E, Lofts S, Lawlor AJ. 1998. Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210–211: 6377.
  • 35
    Gustafsson JP. 2001. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J Colloid Interf Sci 244: 102112.
  • 36
    Benedetti MF, Milne CJ, Kinniburgh DG, van Riemsdijk WH, Koopal LK. 1995. Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model. Environ Sci Technol 29: 446457.
  • 37
    Millward GE. 1995. Processes affecting trace elements speciation in estuaries. Analyst 120: 609614.
  • 38
    Turner DR, Whitfield M, Dickson AG. 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C at 1 atm pressure. Geochim Cosmochim Acta 45: 855882.
  • 39
    Culberson CH. 1981. Direct potentiometry. In Whitfield M, Jagner D, eds, Marine Electrochemistry. John Wiley & Sons, Chichester, UK, pp 187261.
  • 40
    Grosell M, Wood CM. 2002. Copper uptake across rainbow trout gills: Mechanisms of apical entry. J Exp Biol 205: 11791188.
  • 41
    Evans DH. 1987. The fish gill: Site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71: 4758.
  • 42
    Hammerschlag N. 2006. Osmoregulation in elasmobranchs: A review for fish biologists, behaviourists and ecologists. Mar Freshw Behav Physiol 39: 209228.
  • 43
    Grosell M, Nielsen C, Bianchini A. 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133: 287303.
  • 44
    Grosell M, McDonald MD, Wood CM, Walsh PJ. 2004. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. Aquat Toxicol 68: 249262.
  • 45
    Grosell M, McDonald MD, Walsh PJ, Wood CM. 2004. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). II. Drinking rate, copper accumulation and Na+/K+-ATPase activity in osmoregulatory tissues. Aquat Toxicol 68: 263275.
  • 46
    Laurén D, McDonald D. 1985. Effects of copper on branchial ionoregulation in the rainbow trout, Salmo gairdneri (Richardson). J Comp Physiol B 155: 635644.
  • 47
    Pinho GLL, Bianchini A. 2010. Acute copper toxicity in the euryhaline copepod Acartia tonsa: Implications for the development of an estuarine and marine biotic ligand model. Environ Toxicol Chem 29: 18341840.
  • 48
    Boitel F, Truchot JP. 1988. Acid-base equilibrium and ion concentrations in the crab Carcinus maenas exposed to sublethal and lethal concentrations of copper ions. Arch Int Physiol Biochim Biophys 96: A415A415.
  • 49
    Boithel F, Truchot JP. 1989. Effects of sublethal and lethal copper levels on hemolymph acid–base balance and ion concentration in the shore crab Carcinus maenas kept in undiluted sea-water. Mar Biol 103: 495501.
  • 50
    Boithel F, Truchot JP. 1990. Comparative study of the effects of copper on hemolymph ion concentration and acid–base balance in shore crab Carcinus maenas acclimated to full-strength or dilute seawater. Comp Biochem Physiol C 95: 307312.
  • 51
    Bielmyer GK, Brix KW, Capo TR, Grosell M. 2005. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat Toxicol 74: 254263.
  • 52
    Main WPL, Ross C, Bielmyer GK. 2010. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comp Biochem Physiol C 151: 216221.
  • 53
    Raimundo J, Costa PM, Vale C, Costa ML, Moura I. 2010. DNA damage and metal accumulation in four tissues of feral Octopus vulgaris from two coastal areas in Portugal. Ecotoxicol Environ Saf 73: 15431547.
  • 54
    Viant MR, Walton JH, TenBrook PL, Tjeerdema RS. 2002. Sublethal actions of copper in abalone (Haliotis rufescens) as characterized by in vivo 31P NMR. Aquat Toxicol 57: 139151.
  • 55
    Lee JA, Marsden ID, Glover CN. 2010. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquat Toxicol 99: 6572.
  • 56
    Stagg RM, Shuttleworth TJ. 1982. The effects of copper on ionic regulation by the gills of the seawater-adapted flounder (Platichthys flesus L.). J Comp Physiol B 149: 8390.
  • 57
    Wilson RW, Taylor EW. 1993. Differential responses to copper in rainbow trout (Oncorhynchus mykiss) acclimated to sea water and brackish water. J Comp Physiol B 163: 239246.
  • 58
    Larsen BK, Pörtner HO, Jensen FB. 1997. Extra- and intracellular acid–base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128: 337346.
  • 59
    Skaggs HS, Henry RP. 2002. Inhibition of carbonic anhydrase in the gills of two euryhaline crabs, Callinectes sapidus and Carcinus maenas, by heavy metals. Comp Biochem Physiol C 133: 605612.
  • 60
    Vitale AM, Monserrat JM, Castilho P, Rodriguez EM. 1999. Inhibitory effects of cadmium on carbonic anhydrase activity and ion regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol C 122: 121129.
  • 61
    Soyut H, Beydemir Ş, Hisar O. 2008. Effects of some metals on carbonic anhydrase from brains of rainbow trout. Biol Trace Elem Res 123: 179190.
  • 62
    Henry RP. 1984. The role of carbonic anhydrase in blood ion and acid-base regulation. Am Zool 24: 241253.
  • 63
    Henry RP. 1988. Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248: 1924.
  • 64
    Perry SF. 1986. Carbon dioxide excretion in fishes. Can J Physiol 64: 565572.
  • 65
    Randall DJ, Wright PA. 1989. The interaction between carbon dioxide and ammonia excretion and water pH in fish. Can J Zool 67: 29362942.
  • 66
    Wright PA, Randall DJ, Perry SF. 1989. Fish gill water boundary layer: A site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol 158: 627635.
  • 67
    Wilson RW, Wright PA, Munger S, Wood CM. 1994. Ammonia excretion in rainbow trout Oncorhynchus mykiss: The importance of the gill boundary layer acidification: lack of evidence for Na+/H+ exchange. J Exp Biol 191: 3758.
  • 68
    Marshall WS, Grosell M. 2005. Ion transport, osmoregulation and acid–base balance. In Claiborne JB, ed, Physiology of Fishes. CRC Press, Boca Raton, FL, USA, pp 264283.
  • 69
    Loretz CA. 1995. Electrophysiology of ion transport in the teleost intestinal cells. Cellular and molecular approaches to fish ion regulation. In Wood CM, Shuttleworth TJ, eds, Fish Physiology —Vol 14. Academic, London, UK, pp 2556.
  • 70
    Wood CM, Playle RC, Hogstrand C. 1999. Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18: 7183.
  • 71
    Webb NA, Wood CM. 2000. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity. Aquat Toxicol 49: 111129.
  • 72
    Webb NA, Shaw JR, Morgan J, Hogstrand C, Wood CM. 2001. Acute and chronic physiological effects of silver exposure in three marine teleosts. Aquat Toxicol 49: 111129.
  • 73
    Sattin G, Mager EM, Beltramini M, Grosell M. 2010. Cytosolic carbonic anhydrase in the Gulf toadfish is important for tolerance to hypersalinity. Comp Biochem Physiol A 156: 169175.
  • 74
    Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM. 2005. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J Exp Biol 208: 27192729.
  • 75
    Zbanyszek R, Smith LS. 1984. Changes in carbonic anhydrase activity in coho salmon smolts resulting from physical training and transfer into seawater. Comp Biochem Physiol A 79: 229233.
  • 76
    Kultz D, Bastrop RSD. 1992. Mitochondria-rich (MR) cells and the activities of Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Orechromis mossambicus adapted to various salinities. Comp Biochem Physiol B 102: 293301.
  • 77
    Mashiter K, Morgan MR. 1975. Carbonic anhydrase levels in the tissues of flounders adapted to sea water and fresh water. Comp Biochem Physiol A 1: 713717.
  • 78
    Grosell M, Gilmour KM, Perry SF. 2007. Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol Regul Integr Comp Physiol 293: 20992111.
  • 79
    Grosell M, Wood CM, Wilson RW, Bury NRHC, Rankin JC, Jensen FB. 2005. Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol Regul Integr Comp Physiol 288: R936R946.
  • 80
    Wilson RW, Wilson JMGM. 2002. Intestinal bicarbonate secretion by marine teleost fish—Why and how? Biochim Biophys Acta 1566: 182193.
  • 81
    Towle DW, Rushton ME, Heidysch D. 1997. Sodium-proton antiporter in the euryhaline crab Carcinus maenas: Molecular cloning, expression and distribution. J Exp Biol 200: 10031014.
  • 82
    Henry RP. 2001. Environmentally mediated carbonic anhydrase induction in the gill of euryhaline crustaceans. J Exp Biol 204: 9911002.
  • 83
    Henry RP, Gehnrich S, Weihrauch D, Towle DW. 2003. Salinity-mediated carbonic anhydrase induction in the gills of the euyhaline green crab Carcinus maenas. Comp Biochem Physiol A 136: 243258.
  • 84
    Piller SC, Henry RP, Dieller JR, Kreuse DW. 1995. A comparison of the gill physiology of two euryhaline crab species Callinectes sapidus and Callinectes similis: energy production, transport-related enzymes and osmoregulation as a function of acclimation salinity. J Exp Biol 198: 344358.
  • 85
    Laurén DJ, McDonald DG. 1987b. Acclimation to copper by rainbow trout, Salmo gairdneri: Biochemistry. Can J Fish Aquat Sci 44: 105111.
  • 86
    Grosell M, McDonald MD, Walsh PJ, Wood CM. 2004. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+-ATPase activity in osmoregulatory tissues. Aquat Toxicol 68: 263275.
  • 87
    De Boeck G, Vlaeminck A, Balm PHM, Lock RAC, De Wachter B, Blust R. 2000. Morphological and metabolic changes in common carp, Cyprinus carpio, during short-term copper exposure: interactions between Cu2+ and plasma cortisol elevation. Environ Toxicol Chem 20: 374381.
  • 88
    Richards JG, Semple JW, Bystriansky JS, Schulte PM. 2003. Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206: 44754486.
  • 89
    Spaargaren DH. 1972. Osmoregulation in the prawns Palaemon serratus and Lysmata seticaudata from the Bay of Naples. Neth J Sea Res 5: 416436.
  • 90
    Smith RI. 1970. Chloride regulation at low salinity by Nereis diversicolor (Anellida, Polychaeta). 1. Uptake and exchange of chloride. J Exp Biol 53: 7584.
  • 91
    Skaer HB. 1974. The water balance of a serpulid polychaete, Mercierella enigmatica (Fauvel). I. Osmotic concentration and volume regulation. J Exp Biol 60: 321330.
  • 92
    Skaer HB. 1974. The water balance of a serpulid polychaete, Mercierella enigmatica (Fauvel): II. Ion concentration. J Exp Biol 60: 331338.
  • 93
    Henry RP, Watts SA. 2001. Early carbonic anhydrase induction in the gills of the blue crab, Callinectes sapidus, during low salinity acclimation is independent of ornithine decarboxylase activity. J Exp Zool 289: 350350.
  • 94
    Sprague JB. 1985. Factors that modify toxicity. In Rand GM, ed, Fundamentals of Aquatic Toxicology. Hemisphere, Washington DC, pp 124163.
  • 95
    De Schampheleare KAC, Heijerick DG, Janssen CR. 2002. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Physiol C 133: 243258.
  • 96
    Arnold WR, Santore RC, Cotsifas JS. 2005. Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Mar Pollut Bull 50: 16341640.
  • 97
    Wildgust MA, Jones MB. 1998. Salinity change and the toxicity of the free cadmium ion [Cd2+(aq)] to Neomysis integer (Crustacea: Mysidacea). Aquat Toxicol 41: 187192.