SEARCH

SEARCH BY CITATION

Keywords:

  • Trophic transfer;
  • Risk assessment;
  • Accumulation;
  • Uranium;
  • Crayfish

Abstract

Pollutants that occur at sublethal concentrations in the environment may lead to chronic exposure in aquatic organisms. If these pollutants bioaccumulate, then organisms higher in the food chain may also be at risk. Increased attention has thus been focused on the relative importance of dietary uptake, but additional knowledge of the cellular distribution of metals after dietary exposure is required to assess the potential toxicity. The authors address concerns relating to increasing uranium (U) concentrations (from 12 µg/L to 2 mg/L) in the freshwater ecosystem caused by anthropogenic activities. The objective of the present study is to compare uranium bioaccumulation levels in tissues and in the subcellular environment. The authors focused on the cytosol fraction and its microlocalization (TEM-EDX) in the gills and the hepatopancreas (HP) of the crayfish Orconectes limosus after 10 d of direct exposure (at concentrations of 20, 100, and 500 µg/L) and five trophic exposure treatments (at concentrations from 1 to 20 µg/g). Results indicated that adsorption of uranium on the cuticle represents the main contribution of total uranium accumulation to the animal. Accumulation in the gills should be considered only as a marker of waterborne uranium exposure. Accumulation in the HP after trophic environmental exposure conditions was higher (18.9 ± 3.8 µg/g) than after direct exposure. Moreover, no significant difference in the subcellular distribution of uranium (50%) in HP was observed between animals that had been exposed to both types of treatment. A potential toxic effect after uranium accumulation could therefore exist after trophic exposure. This confirms the need to focus further studies on the metal (uranium) risk assessment. Environ. Toxicol. Chem. 2013;32:410–416. © 2012 SETAC