SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Van den Brink PJ. 2006. Response to recent criticism on aquatic (semi-) field studies experiments: Opportunities for new developments in ecological risk assessment of pesticides. Integrated Environ Assess Manag 2:202203.
  • 2
    Posthuma L, Suter GW II, Traas TP. 2002. Species sensitivity distributions in ecotoxicology. In: Newman MC, ed, Environmental and Ecological Risk Assessment. Lewis, Boca Raton, FL, USA, p 587.
  • 3
    Bartell SM, Lefebvre G, Kaminski G, Carreau M, Campbell KR. 1999. An ecosystem model for assessing ecological risks in Quebec rivers, lakes, and reservoirs. Ecol Model 124:4367.
  • 4
    De Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR. 2008. Validation of an ecosystem modeling approach as a tool for ecological effect assessments. Chemosphere 71:529545.
  • 5
    Maltby L, Blake N, Brock TCM, Van Den Brink PJ. 2005. Insecticide species sensitivity distributions: Importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379388.
  • 6
    Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M. 2002. Species sensitivity distributions: Data and model choice. Mar Pollut Bull 45:192202.
  • 7
    Pennington DW. 2003. Extrapolating ecotoxicological measures from small data sets. Ecotoxicol Environ Saf 56:238250.
  • 8
    Newman MC, Ownby DR, Mezin LCA, Powell DC, Christensen TRL, Lerberg SB, Anderson BA. 2000. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508515.
  • 9
    Wang B, Yu G, Huang J, Hu HY. 2008. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches. Ecotoxicology 17:716724.
  • 10
    Schmitt-Jansen M, Altenburger R. 2005. Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304312.
  • 11
    van Wijngaarden RPA, Arts GHP, Belgers JDM, Boonstra H, Roessink I, Schroer AFW, Brock TCM. 2010. The species sensitivity distribution approach compared to a microcosm study: A case study with the fungicide fluazinam. Ecotoxicol Environ Saf 73:109122.
  • 12
    Selck H, Riemann B, Christoffersen K, Forbes VE, Gustavson K, Hansen BW, Jacobsen JA, Kusk OK, Petersen S. 2002. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field. Ecotoxicol Environ Saf 52:97112.
  • 13
    Van Sprang PA, Verdonck FAM, Van Assche F, Regoli L, De Schamphelaere KAC. 2009. Environmental risk assessment of zinc in European freshwaters: A critical appraisal. Sci Total Environ 407:53735391.
  • 14
    Versteeg DJ, Belanger SE, Carr GJ. 1999. Understanding single-species and model ecosystem sensitivity: Data-based comparison. Environ Toxicol Chem 18:13291346.
  • 15
    Naito W, Miyamoto K, Nakanishi J, Masunaga S, Bartell SM. 2003. Evaluation of an ecosystem model in ecological risk assessment of chemicals. Chemosphere 53:363375.
  • 16
    De Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR. 2008. Comparison of different toxic effect sub-models in ecosystem modelling used for ecological effect assessments and water quality standard setting. Ecotoxicol Environ Saf 69:1323.
  • 17
    De Laender F, De Schamphelaere KAC, Janssen CR, Vanrolleghem PA. 2007. An ecosystem modelling approach for deriving water quality criteria. Water Sci Technol 56:1927.
  • 18
    R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • 19
    Rosenzweig ML, MacArthur RH. 1963. Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209223.
  • 20
    Rosenzweig ML. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK.
  • 21
    Hendriks AJ, Maas-Diepeveen JLM, Heugens EHW, Van Straalen NM. 2005. Meta-analysis of intrinsic rates of increase and carrying capacity of populations affected by toxic and other stressors. Environ Toxicol Chem 24:22672277.
  • 22
    Dakos V, Beninca E, van Nes EH, Philippart CJM, Scheffer M, Huisman J. 2009. Interannual variability in species composition explained as seasonally entrained chaos. Proc R Soc Lond B Biol Sci 276:28712880.
  • 23
    Bruggeman J, Kooijman SALM. 2007. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol Oceanogr 52:15331544.
  • 24
    Odum EP. 1971. Fundamentals of Ecology. W.B. Saunders Co, Philadelphia, PA, USA, pp 574.
  • 25
    Suter GW II. 1993. Ecological Risk Assessment. Lewis Publishers, Boca Raton, FL, USA, pp 538.
  • 26
    De Schamphelaere KAC, Janssen CR. 2004. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem 23:13651375.
  • 27
    De Schamphelaere KAC, Janssen CR. 2006. Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry. Environ Sci Technol 40:45144522.
  • 28
    De Schamphelaere KAC, Lofts S, Janssen CR. 2005. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ Toxicol Chem 24:11901197.
  • 29
    De Schamphelaere KAC, Janssen CR. 2004. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): Comparison with other fish species and development of a biotic ligand model. Environ Sci Technol 38:62016209.
  • 30
    Heijerick DG, De Schamphelaere KAC, Janssen CR. 2002. Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: Possibilities and limitations. Comp Biochem Physiol C 133:207218.
  • 31
    Heijerick DG, De Schamphelaere KAC, Van Sprang PA, Janssen CR. 2005. Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicol Environ Saf 62:110.
  • 32
    Duboudin C, Ciffroy P, Magaud H. 2004. Effects of data manipulation and statistical methods on species sensitivity distributions. Environ Toxicol Chem 23:489499.
  • 33
    Roussel H. 2005. Effects of copper on structure and function of freshwater ecosystems: A lotic mesocosms study. PhD thesis. University of Toulouse, Toulouse, France.
  • 34
    Mebane CA. 2010. Relevance of Risk Predictions Derived from a Chronic Species Sensitivity Distribution with Cadmium to Aquatic Populations and Ecosystems. Risk Anal 30:203223.
  • 35
    European Commission. Joint Research Centre 2003. Technical guidance document in support of Commission Directive 93/67/EEC on Risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk assessment for existing substances and Commission Directive (EC) 98/8 on Biocides. Luxembourg, Luxembourg.
  • 36
    Brix KV, DeForest DK, Adams WJ. 2001. Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environ Toxicol Chem 20:18461856.
  • 37
    Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Mayer FL. 2006. Interspecies correlation estimates predict protective environmental concentrations. Environ Sci Technol 40:31023111.
  • 38
    Hendriks AJ. 1999. Allometric scaling of rate, age and density parameters in ecological models. Oikos 86:293310.
  • 39
    Smit MGD, Hendriks AJ, Schobben JHM, Karman CC, Schobben HPM. 2001. The variation in slope of concentration-effect relationships. Ecotoxicol Environ Saf 48:4350.