SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D. 2013. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:11231131.
  • 2
    Montes MO, Hanna SK, Lenihan HS, Keller AA. 2012. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139145.
  • 3
    Hull MS, Vikesland PJ, Schultz IR. 2013. Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis). Aquat Toxicol 140-141:8997.
  • 4
    Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA. 2010. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:73297334.
  • 5
    Dybowska AD, Croteau M-N, Misra SK, Berhanu D, Luoma SN, Christian P, O'Brien P, Valsami-Jones E. 2011. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers. Environ Pollut 159:266273.
  • 6
    Elsaesser A, Howard CV. 2011. Toxicology of nanoparticles. Adv Drug Deliver Rev 64:129137.
  • 7
    Handy R, Owen R, Valsami-Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315325.
  • 8
    Xiong D, Fang T, Yu L, Sima X, Zhu W. 2011. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:14441452.
  • 9
    Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:4147.
  • 10
    Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J. 2012. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J Membrane Sci 389:155161.
  • 11
    Wong SWY, Leung PTY, Djurisic AB, Leung KMY. 2010. Toxicities of nano zinc oxide to five marine organisms: Influences of aggregate size and ion solubility. Analyt Bioanalyt Chem 396:609618.
  • 12
    Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182189.
  • 13
    Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer Ml, Couté A, Fiévet F. 2010. ZnO nanoparticles: Synthesis, characterization, and ecotoxicological studies. Langmuir 26:65226528.
  • 14
    Bystrzejewska-Piotrowska G, Golimowski J, Urban PL. 2009. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage 29:25872595.
  • 15
    Zhang L, Jiang Y, Ding Y, Povey M, York D. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479489.
  • 16
    Baek Y-W, An Y-J. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:16031608.
  • 17
    Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine 7:184192.
  • 18
    Jiang W, Mashayekhi H, Xing B. 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:16191625.
  • 19
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol 41:84848490.
  • 20
    Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:14611468.
  • 21
    Ji J, Long Z, Lin D. 2011. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525530.
  • 22
    Yu L-p, Fang T, Xiong D-w, Zhu W-t, Sima X-f. 2011. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, •OH production and particle dissolution in distilled water. J Environm Monit 13:19751982.
  • 23
    Zhu X, Wang J, Zhang X, Chang Y, Chen Y. 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnol 20:195103.
  • 24
    Paszek E, Czyz J, Woźnicka O, Jakubiak D, Wojnarowicz J, Łojkowski W, Stepień E. 2012. Zinc oxide nanoparticles impair the integrity of human umbilical vein endothelial cell monolayer in vitro. J Biomed Nanotechnol 8:957967.
  • 25
    Ma H, Williams PL, Diamond SA. 2013. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ Pollut 172:7685.
  • 26
    Sanna K. 1995. Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environ Pollut 90:263267.
  • 27
    Wang W-X, Guan R. 2010. Subcellular distribution of zinc in Daphnia magna and implication for toxicity. Environ Toxicol Chem 29:18411848.
  • 28
    Evens R, De Schamphelaere KAC, De Samber B, Silversmit G, Schoonjans T, Vekemans B, Balcaen L, Vanhaecke F, Szaloki I, Rickers K, Falkenberg G, Vincze L, Janssen CR. 2011. Waterborne versus Dietary zinc accumulation and toxicity in Daphnia magna: A synchrotron radiation based X-ray fluorescence imaging approach. Environ Sci Technol 46:11781184.
  • 29
    Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:13081316.
  • 30
    Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R. 2009. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:13561365.
  • 31
    Zhu X, Zhu L, Chen Y, Tian S. 2009. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of Nanoparticle Research 11:6775.
  • 32
    Evens R, De Schamphelaere K, De Laender F, Janssen C. 2012. The effects of Zn-contaminated diets on Daphnia magna reproduction may be related to Zn-induced changes of the dietary P content rather than to the dietary Zn content itself. Aquat Toxicol 110–111:916.
  • 33
    Patterson A. 1939. The scherrer formula for X-ray particle size determination. Phys Rev 56:978982.
  • 34
    ASTM International. 1980. Standart Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertabrates and Anphibians. Philadelphia, PA, USA.
  • 35
    Organisation for Economic Co-operation and Development. 2004. Test No. 202: Daphnia sp., acute immobilization test. OECD Guidelines for the Testing of Chemicals. Paris, France.
  • 36
    McWilliam RA, Baird DJ. 2002. Postexposure feeding depression: A new toxicity endpoint for use in laboratory studies with Daphnia magna. Environ Toxicol Chem 21:11981205.
  • 37
    Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S. 2014. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232241.
  • 38
    Allen Y, Calow P, Baird DJ. 1995. A mechanistic model of contaminant-induced feeding inhibition in Daphnia magna. Environ Toxicol Chem 14:16251630.
  • 39
    Organisation for Economic Co-operation and Development. 1998. Test No. 211: Daphnia magna reproduction test. OECD Guidelines for the Testing of Chemicals. Paris, France.
  • 40
    Lead JR, Smith E. (eds). 2009. Environmental and Human Health Impacts of Nanotechnology. John Wiley & Sons, Chichester, UK.
  • 41
    Heijerick DG, De Schamphelaere KAC, Janssen CR. 2002. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: Development and validation of a biotic ligand model. Environ Toxicol Chem 21:13091315.
  • 42
    Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A 43:278284.
  • 43
    Nowack B, Bucheli TD. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:522.
  • 44
    Zhou D, Keller AA. 2010. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:29482956.
  • 45
    Heijerick DG, De Schamphelaere KAC, Van Sprang PA, Janssen CR. 2005. Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotox Environ Safe 62:110.
  • 46
    Sánchez-Ortíz JR, Sarma SSS, Nandini S. 2010. Comparative population growth of Ceriodaphnia dubia and Daphnia pulex (Cladocera) exposed to zinc toxicity. J Environ Sci Health A 45:3741.
  • 47
    Muyssen BTA, De Schamphelaere KAC, Janssen CR. 2006. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat Toxicol 77:393401.