SEARCH

SEARCH BY CITATION

Keywords:

  • Adsorption;
  • Carbon nanotubes;
  • Tetracycline;
  • Aqueous solution chemistry

Abstract

Carbon nanotubes have shown great potential as effective adsorbents for hydrophobic organic contaminants in water treatment. The present study investigated the influence of aqueous solution chemistry on the adsorption of tetracycline to carbon nanotubes. Specifically, the effects of ionic strength (NaCl and CaCl2) and presence of Cu2+ ion (7.5 mg/L) or dissolved soil or coal humic acids (50 mg/L) on adsorption of tetracycline to single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and nonporous pure graphite as a model of the graphite surface were systematically estimated. The presence of humic acids suppressed tetracycline adsorption on graphite and MWNT prominently, with stronger effects observed on graphite, but only slightly affected tetracycline adsorption on SWNT. The relatively large humic acid components could not readily access the small interstitial spaces of SWNT and thus were less competitive with tetracycline adsorption. The presence of Cu2+ ion increased tetracycline adsorption to both SWNT and MWNT through the mechanism of cation bridging, with much larger effects observed on MWNT. This was probably because when compared with the Cu2+ ions complexed on the surface of SWNT, those on the surface of MWNT having larger mesoporous interstices were more accessible to the relatively bulky tetracycline molecule. Increasing the ionic strength from 10 mM to 100 mM decreased tetracycline adsorption on both SWNT and MWNT, which was attributed to electronic shielding of the negatively charged surface sites. These results show that aqueous solution chemistry is important to tetracycline adsorption on carbon nanotubes. Environ. Toxicol. Chem. 2010;29:2713–2719. © 2010 SETAC