SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Yu He, Mourad Harir, Guonan Chen, Regis D. Gougeon, Lan zhang, Xiayang Huang, Philippe Schmitt-Kopplin, Capillary electrokinetic fractionation mass spectrometry (CEkF/MS): Technology setup and application to metabolite fractionation from complex samples coupled at-line with ultrahigh-resolution mass spectrometry, ELECTROPHORESIS, 2014, 35, 14
  2. 2
    Aaron D Redman, Thomas F Parkerton, Mike HI Comber, Miriam Leon Paumen, Charles V Eadsforth, Bhodan Dmytrasz, Duncan King, Christopher S Warren, Klaas den Haan, Nadia Djemel, PETRORISK: A risk assessment framework for petroleum substances, Integrated Environmental Assessment and Management, 2014, 10, 3
  3. 3
    Angelika Stenzel, Kai-Uwe Goss, Satoshi Endo, Prediction of partition coefficients for complex environmental contaminants: Validation of COSMOtherm, ABSOLV, and SPARC, Environmental Toxicology and Chemistry, 2014, 33, 7
  4. 4
    Robert M. Burgess, Walter J. Berry, David R. Mount, Dominic M. Di Toro, Mechanistic sediment quality guidelines based on contaminant bioavailability: Equilibrium partitioning sediment benchmarks, Environmental Toxicology and Chemistry, 2013, 32, 1
  5. 5
    Fabiola Medina, Sergio Aguila, Maria Camilla Baratto, Andrea Martorana, Riccardo Basosi, Joel B. Alderete, Rafael Vazquez-Duhalt, Prediction model based on decision tree analysis for laccase mediators, Enzyme and Microbial Technology, 2013, 52, 1, 68

    CrossRef

  6. 6
    R. Fraczkiewicz, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013,

    CrossRef

  7. 7
    Shuming Zhang, A reliable and efficient first principles-based method for predicting pKa values. 4. organic bases, Journal of Computational Chemistry, 2012, 33, 31
  8. 8
    John Andraos, Inclusion of Environmental Impact Parameters in Radial Pentagon Material Efficiency Metrics Analysis: Using Benign Indices as a Step Towards a Complete Assessment of “Greenness” for Chemical Reactions and Synthesis Plans, Organic Process Research & Development, 2012, 16, 9, 1482

    CrossRef

  9. You have free access to this content9
    Aaron D. Redman, Thomas F. Parkerton, Joy A. McGrath, Dominic M. Di Toro, PETROTOX: An aquatic toxicity model for petroleum substances, Environmental Toxicology and Chemistry, 2012, 31, 11
  10. You have free access to this content10
    Aaron D. Redman, Joy A. McGrath, William A. Stubblefield, Al W. Maki, Dominic M. Di Toro, Quantifying the concentration of crude oil microdroplets in oil–water preparations, Environmental Toxicology and Chemistry, 2012, 31, 8
  11. 11
    Stefan Balaz, Modeling Kinetics of Subcellular Disposition of Chemicals, Chemical Reviews, 2009, 109, 5, 1793

    CrossRef

  12. 12
    Mark G. Cantwell, John W. King, Robert M. Burgess, Peter G. Appleby, Reconstruction of contaminant trends in a salt wedge estuary with sediment cores dated using a multiple proxy approach, Marine Environmental Research, 2007, 64, 2, 225

    CrossRef

  13. 13
    Christine L Russom, Mining environmental toxicology information: web resources, Toxicology, 2002, 173, 1-2, 75

    CrossRef

  14. 14
    Daniel J. Letinski, Martin J. Connelly, Dennis R. Peterson, Thomas F. Parkerton, Slow-stir water solubility measurements of selected alcohols and diesters, Chemosphere, 2002, 48, 3, 257

    CrossRef

  15. 15
    Thomas F. Parkerton, Wolfgang J. Konkel, Application of Quantitative Structure–Activity Relationships for Assessing the Aquatic Toxicity of Phthalate Esters, Ecotoxicology and Environmental Safety, 2000, 45, 1, 61

    CrossRef

  16. 16
    David M DeMarini, Stefano Landi, Takeshi Ohe, Daniel T Shaughnessy, Robert Franzén, Ann.M Richard, Mutation spectra in Salmonella of analogues of MX: implications of chemical structure for mutational mechanisms, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 453, 1, 51

    CrossRef

  17. 17
    Dominic M. Di Toro, Joy A. McGrath, David J. Hansen, Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue, Environmental Toxicology and Chemistry, 2000, 19, 8
  18. 18
    Dominic M. Di Toro, Joy A. McGrath, Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures and sediments, Environmental Toxicology and Chemistry, 2000, 19, 8
  19. 19
    Darius Sabaliünas, Juozas Lazutka, Inesa Sabaliüniene, Anders Södergren, Use of semipermeable membrane devices for studying effects of organic pollutants: Comparison of pesticide uptake by semipermeable membrane devices and mussels, Environmental Toxicology and Chemistry, 1998, 17, 9
  20. 20
    Charles A Stales, Dennis R Peterson, Thomas F Parkerton, William J Adams, The environmental fate of phthalate esters: A literature review, Chemosphere, 1997, 35, 4, 667

    CrossRef

  21. 21
    D. Sabali[ubar]nas, J. Ellington, R. Lekevičius, Alkaline and Neutral Hydrolysis of Four Phenylurea Herbicides, International Journal of Environmental Analytical Chemistry, 1996, 64, 2, 123

    CrossRef

  22. 22
    Wan-Ying Shiu, Kuo-Ching Ma, Dana Varhaníčková, Donald Mackay, Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment, Chemosphere, 1994, 29, 6, 1155

    CrossRef

  23. 23
    S.H. Hilal, L.A. Carreira, S.W. Karickhoff, C.M. Melton, Estimation of gas-liquid chromatographic retention times from molecular structure, Journal of Chromatography A, 1994, 662, 2, 269

    CrossRef

  24. 24
    P. Tremolada, A. Di Guardo, D. Calamari, E. Davoli, R. Fanelli, Mass-spectrometry-derived data as possible predictive method for environmental persistence of organic molecules, Chemosphere, 1992, 24, 10, 1473

    CrossRef

  25. 25
    Michael E. Mullins, Tony N. Rogers, Peter P. Radecki, Engineering, Chemical Data Correlation, Kirk-Othmer Encyclopedia of Chemical Technology,