SEARCH

SEARCH BY CITATION

References

  • 1
    Miller, M. M., S. P. Wasik, G. L. Huang, W. Y. Shiu and D. Mackay: 1985. Relationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol. 19: 522529.
  • 2
    Doucette, W. J. and A. W. Andres: 1987. Correlation of octanol/water partition coefficients and total molecular surface area for highly hydrophobic aromatic compounds. Environ. Sci. Technol. 21: 821824.
  • 3
    Rekker, R. F.: 1977. The Hydrophobic Fragment Constant. Elsevier, Amsterdam, The Netherlands.
  • 4
    Banerjee, S., S. H. Yalkowsky and S. C. Valvant: 1980. Water solubility and octanol/water partition coefficients of organics Limitations of the solubility-partition coefficient correlation. Environ. Sci. Toxicol. 14: 12271229.
  • 5
    Kamlet, M. J., R. M. Doherty, V. M. Abboud, M. H. Abraham and R. W. Taft: 1986. Linear solvation energy relationships 36 Molecular properties governing solubilities of organic nonelectrolytes in water. J Pharm Sci. 75: 338349.
  • 6
    Lyman, W. J., W. E. Reehl and D. H. Rosenblatt: 1982. Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Chemicals. McGraw-Hill, New York, NY.
  • 7
    Shuurmann, G.: 1990. Quantitative structure-property relationships for the polarizability, solvotochromic parameters and lipophilicity. Quan Struc Act Relat. 9: 326333.
  • 8
    Leo, A. J.: 1975. Calculation of partition coefficients useful in evaluation of the relative hazards of various chemicals in the environment. In G. D.Veith, ed., Structure Activity Correlations in Studies of Toxicity and Bio concentration with Aquatic Organisms. International Joint Commission, Windsor, Ontario, Canada, pp. 151175.
  • 9
    MacKay, D., A. Bobra, W. Y. Shiu and S. H. Yalkowski: 1980. Relationship between aqueous solubility and octanol-water partition coefficients. Chemosphere 9: 701711.
  • 10
    Zepp, R. G.: 1982. Experimental approaches to environmental photochemistry. In O.Hutzinger, ed., Handbook of Environmental Chemistry, Vol. 2 Springer-Verlag, New York, NY, pp. 1942.
  • 11
    Zepp, R. G. and D. M. Cline: 1977. Rates of direct photolysis in the aquatic environment. Environ. Sci. Technol. 11: 359366.
  • 12
    Wolfe, N. L., R. G. Zepp, J. A. Gordon, G. L. Baughman and D. M. Cline: 1977. Kinetics of chemical degradation of malathion in water. Environ. Sci. Technol. 11: 88100.
  • 13
    Smith, J. L., W. R. Mabey, N. Bohanes, B. B. Hold, S. S. Lee, T. W. Chou, D. C. Bomberger and T. Mill: 1978. Environmental pathways of selected chemicals in freshwater systems Part II EPA 600/7–78 074 (NTIS #PB288 511/9) U. S. Environmental Protection Agency, Athens, GA.
  • 14
    Drossman, H., H. Johnson and T. Mill: 1987. Structure activity relationships for environmental processes. 1 Hydrolysis of esters and carbamates. Chemosphere. 17: 15091530.
  • 15
    Dewar, M. J. S. and R. C. Dougherty: 1975. The PMO Theory of Organic Chemistry. Plenum Press, New York, NY.
  • 16
    Lowry, T. H. and K. S. Richardson: 1987. Mechanisms and Theory in Organic Chemistry, 3rd ed. Harper & Row, New York, NY.
  • 17
    Leffler, J. E. and E. Grunwald: 1969. Rates of Equilibria of Organic Reactions. John Wiley & Sons, New York, NY.
  • 18
    Hammett, L. P.: 1970. Physical Organic Chemistry, 2nd ed. McGraw Hill, New York, NY.
  • 19
    Dewar, M. J. S.: 1969. The Molecular Orbital Theory of Organic Chemistry. McGraw-Hill, New York, NY.
  • 20
    Taft, R. W., ed. 1987. Progress in Organic Chemistry, Vol. 16 John Wiley & Sons, New York, NY.
  • 21
    Perrin, D. D.: 1965. Dissociation of Constants of Organic Bases in Aqueous Solution. Butterworths, London, UK.