Get access

Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the rhine and meuse rivers



Concentrations of heavy metals and various groups of organic microcontaminants were measured in zebra mussel and eel from the Rhine–Meuse basin. Residues in mussel from the Rhine and Meuse were on average 2.3 and 2.9 times higher than in those from the reference location of IJsselmeer. Total body burdens of organic microcontaminants in mussel and eel varied between 0.05 to 0.07 mmol/kg fat weight in six out of seven samples. The largest contribution in mussels and eel came from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), respectively. Concentrations of bromodiphenylethers, chlorobenzenes, chloronitrobenzenes, chloroterphenyls, and chlorobenzyltoluenes were lower. Total polybrominated biphenyl residues appear lower than total PCB levels. The largest chlorobiocide residues were noted for 4,4′-DDE, toxaphene, trichlorophenylmethane, and γ-hexachlorocyclohexane. An extraordinary high body burden of 1.2 mmol/kg fat weight, largely consisting of acenaphthene, was observed in one sample. Ratios of concentrations in organism fat and dry organic suspended solids varied between 1 and 10 for traditionally monitored organochlorines, independent of the octanol–water partition coefficient (Kow; for Kow < 106). The values did not deviate significantly from a value of about 3.3, expected for equilibrium partitioning of persistent chemicals. Lower values were observed for PAHs and some chloro(nitro)benzenes. Most ratios of concentrations in eel and mussel fat were within the range of 1 to 10, also largely independent of Kow. Yet, values tended to be higher at Kow > 106. Ratios below 1 were noted for pentabromodiphenylether, pentachloro(thio)anisol, chlorobenzyltoluenes, and some chloronitrobenzenes, chlorobiphenyls, and chlorobiocides. These field data confirm recent modeling efforts on bioconcentration and biomagnification. For heavy metals, atomic mass explained 67% of the variation in zebra mussel residues.