Get access

Impact of sediment manipulation on the bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated and laboratory-dosed sediments by an oligochaete

Authors


Abstract

The accumulation kinetics of polycyclic aromatic hydrocarbons (PAHs) by the freshwater oligochaete Lumbriculus variegatus were measured for field-contaminated and laboratory-dosed sediment. In addition, sediment manipulations typically used for homogenization and dosing in bioaccumulation assays were compared. Rather than an asymptotic approach to steady state, both resident and dosed PAH accumulation exhibited a peak during the 14-d assays, with steeper declines being noted for the lower-molecular-weight compounds. Lack of evidence of a peak for higher-molecular-weight PAHs may be due to slower kinetics and the short length of the assay. Relative to minimally mixed sediment, slurried sediment enhanced the accumulation of less-soluble resident PAHs, did not affect moderately soluble PAHs, and reduced the uptake of the more-soluble PAHs, fluorene and phenanthrene. Aging sediment after mixing reduced the availability of highly to moderately soluble resident PAHs but had no effect on less-soluble PAHs. A similar effect was noted for dosed PAHs, though a larger reduction in bioavailability was observed. Dosed PAH uptake clearance coefficients (ks) exceeded those of minimally mixed resident PAHs by factors of 3 to 4 for pyrene and 26 for benzo[a]pyrene. These results demonstrate that sediment manipulations and contamination history need to be considered when measuring PAH bioaccumulation.

Get access to the full text of this article

Ancillary