SEARCH

SEARCH BY CITATION

Keywords:

  • Biodegradation;
  • Mycobacterium sp.;
  • Benzo[a]pyrene;
  • Inhibition

Abstract

Mycobacterium sp. strain RJGII-135 is capable of degrading a wide range of polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (BaP). In this study, critical aspects of degradation were investigated, including compound uptake, relative rates of PAH degradation, and the effects of co-occurring PAH substrates on BaP degradation and mineralization to CO2. Mycobacterium sp. strain RJGII-135 was capable of degrading phenanthrene, anthracene, and pyrene at a 10- to 20-fold greater rate than benz[a]anthracene (BaA) and BaP. A significant amount of phenanthrene and pyrene, 30% and 10%, respectively, was completely mineralized, whereas less than 4% of anthracene, BaA, and BaP was mineralized. The PAH uptake assays demonstrated that high amounts of BaP and BaA, 81% and 75% of added compound, respectively, could be recovered from bacterial cell fractions after a 4-h incubation compared with pyrene (61%), anthracene (53%), and phenanthrene (47%). The half-saturation constant (Km) for pyrene was threefold lower for pyrene over BaP, suggesting that the degradation system in Mycobacterium sp. strain RJGII-135 has a higher affinity for pyrene, reaching maximal degradative activity at lower concentrations. No hybridization to dioxygenase gene probes nahAc, bphA1, or tolC1C2 was detected. Studies to investigate competition between different PAH substrates demonstrated that the rate of BaP metabolism was influenced by the presence of a second PAH substrate. The BaP metabolism was inhibited when coincubated with BaA, pyrene, and anthracene. Phenanthrene did not inhibit but enhanced BaP metabolism sixfold. These data suggest that induction effects of components of complex mixtures may be as important as competitive metabolism when assessing the ability of bacteria to effectively degrade high-molecular-weight PAHs in the environment.