Enzymatic correlates of energy status in wild yellow perch inhabiting clean and contaminated environments



Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Environ. Toxicol. Chem. 2011;30:2148–2156. © 2011 SETAC