• 1
    Roco MC. 2003. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14: 337346.
  • 2
    Colvin VL. 2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21: 11661170.
  • 3
    Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823839.
  • 4
    Wiesner M, Lowry GV, Alvarez P, Dionysiou D, Biswas P. 2006. Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40: 43364345.
  • 5
    Marchant GE, Sylvester DJ, Abbott KW. 2009. What does the history of technology regulation teach us about nano oversight? J Law Med Ethics 37: 724731.
  • 6
    Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43: 92169222.
  • 7
    Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2010. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29: 10361048.
  • 8
    Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42: 44474453.
  • 9
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. 1997. Storage of hydrogen in single-walled carbon nanotubes. Nature 386: 377379.
  • 10
    Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. 2005. Chemical detection with a single-walled carbon nanotube capacitor. Science 307: 19421945.
  • 11
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. 2003. Super-tough carbon-nanotube fibres—These extraordinary composite fibres can be woven into electronic textiles. Nature 423: 703703.
  • 12
    Mauter MS, Elimelech M. 2008. Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42: 58435859.
  • 13
    Biglova YN, Sigaeva NN, Talipov RF, Monakov YB. 2005. Review of fullerene organic chemistry. Oxid Comm 28: 753798.
  • 14
    Campbell EEB, Rohmund F. 2000. Fullerene reactions. Rep Prog Phys 63: 10611109.
  • 15
    Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK. 2007. Medicinal applications of fullerenes. Int J Nanomedicine 2: 639649.
  • 16
    Degiorgi L. 1998. Fullerenes and carbon derivatives: From insulators to superconductors. Adv Phys 47: 207316.
  • 17
    Petersen EJ, Zhang L, Mattison NT, O'Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang QG, Henry TB, Holbrook RD, Chen KL. 2011. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol, DOI: 10.1021/es201579y.
  • 18
    Holbrook RD, Kline CN, Filliben JJ. 2010. Impact of source water quality on multiwall carbon nanotube coagulation. Environ Sci Technol 44: 13861391.
  • 19
    Kiser MA, Ryu H, Jang HY, Hristovski K, Westerhoff P. 2010. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44: 41054114.
  • 20
    Liu XY, O'Carroll DM, Petersen EJ, Huang QG, Anderson CL. 2009. Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol 43: 81538158.
  • 21
    Chen Z, Westerhoff P, Herckes P. 2008. Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 27: 18521859.
  • 22
    Oberdörster E. 2004. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112: 10581062.
  • 23
    Grieger KD, Hansen SF, Baun A. 2009. The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 3: 1U17.
  • 24
    Baun A, Hartmann NB, Grieger K, Kusk KO. 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 17: 387395.
  • 25
    Park JW, Henry TB, Ard S, Menn FM, Compton RN, Sayler GS. 2011. The association between nC60 and 17 alpha-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics. Nanotoxicology 5: 406416.
  • 26
    Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB. 2008. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86: 379387.
  • 27
    Ferguson PL, Chandler GT, Templeton RC, Demarco A, Scrivens WA, Englehart BA. 2008. Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42: 38793885.
  • 28
    Petersen EJ, Pinto RA, Landrum PF, Weber WJ Jr. 2009. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43: 41814187.
  • 29
    Park JW, Henry TB, Menn FM, Compton RN, Sayler G. 2010. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio). Chemosphere 81: 12271232.
  • 30
    Yang XY, Edelmann RE, Oris JT. 2010. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage to Daphnia magna . Aquat Toxicol 100: 202210.
  • 31
    Kim KT, Edgington AJ, Klaine SJ, Cho JW, Kim SD. 2009. Influence of multiwalled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper. Environ Sci Technol 43: 89798984.
  • 32
    Kim KT, Klaine SJ, Lin SJ, Ke PC, Kim SD. 2010. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna . Environ Toxicol Chem 29: 122126.
  • 33
    Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellov M, Joner E, Fernandes TF. 2010. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci Tot Environ 408: 17451754.
  • 34
    Jakubek LM, Marangoudakis S, Raingo J, Liu XY, Lipscombe D, Hurt RH. 2009. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials 30: 63516357.
  • 35
    Liu XY, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, Hurt RH. 2007. Bioavailability of nickel in single-wall carbon nanotubes. Adv Mater 19: 27902796.
  • 36
    Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss CA, Vikesland PJ. 2009. Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol 43: 41694174.
  • 37
    Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. 2009. Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations—Many questions, some answers. Mutat Res 681: 241258.
  • 38
    Park H, Grassian VH. 2010. Commercially manufactured engineered nanomaterials for environmental and health studies: Important insights provided by independent characterization. Environ Toxicol Chem 29: 715721.
  • 39
    Warheit DB. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101: 183185.
  • 40
    Petersen EJ, Nelson BC. 2010. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398: 613650.
  • 41
    Petersen EJ, Huang QG, Weber WJ Jr. 2008. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida . Environ Sci Technol 42: 30903095.
  • 42
    Petersen EJ, Huang QG, Weber WJ Jr. 2008. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus . Environ Health Perspect 116: 496500.
  • 43
    Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH. 2001. Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105: 11571161.
  • 44
    U.S. Environmental Protection Agency. 1992. Method 1311. Toxicity characteristic leaching procedure. Test methods for evaluating solid waste, physical/chemical methods (SW 846), Washington, DC.
  • 45
    Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P. 1993. Development of an in-vitro screening-test to evaluate the in-vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27: 28702877.
  • 46
    Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33: 36973705.
  • 47
    Tang JX, Petersen EJ, Huang QG, Weber WJ Jr. 2007. Development of engineered natural organic sorbents for environmental applications: Part 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environ Sci Technol 41: 29012907.
  • 48
    Decker JE, Walker ARH, Bosnick K, Clifford CA, Dai L, Fagan J, Hooker S, Jakubek ZJ, Kingston C, Makar J, Mansfield E, Postek MT, Simard B, Sturgeon R, Wise S, Vladar AE, Yang L, Zeisler R. 2009. Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes. Metrologia 46: 682692.
  • 49
    Auffan M, Rose J, Orsiere T, Meo MD, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botta A, Wiesner MR, Bottero JY. 2009. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro . Nanotoxicology 3: 161171.
  • 50
    Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lucas S, Janssen CR. 2008. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ Toxicol Chem 27: 19481957.
  • 51
    Fraser TWK, Reinardy HC, Shaw BJ, Henry TB, Handy RD. 2011. Dietary toxicity of single walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5: 98108.
  • 52
    Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT. 2006. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40: 73877393.
  • 53
    Kang S, Herzberg M, Rodrigues DF, Elimelech M. 2008. Antibacterial effects of carbon nanotubes: Size does matter. Langmuir 24: 64096413.
  • 54
    Kang S, Mauter MS, Elimelech M. 2008. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42: 75287534.
  • 55
    Kang S, Mauter MS, Elimelech M. 2009. Microbial cytotoxicity of carbon-based nanomaterials: Implications for river water and wastewater effluent. Environ Sci Technol 43: 26482653.
  • 56
    Hassellov M, Readman JW, Ranville JF, Tiede K. 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17: 344361.
  • 57
    Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Add Contam 25: 795821.
  • 58
    Park JJ, Fagan JA, Huh JY, Migler KB, Karim A, Raghavan D. 2010. SPR imaging study of DNA wrapped single wall carbon nanotube (ssDNA-SWCNT) adsorption on a model biological (collagen) substrate. Soft Matter 6: 55815588.
  • 59
    Saleh NB, Pfefferle LD, Elimelech M. 2010. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44: 24122418.
  • 60
    Smith B, Wepasnick K, Schrote KE, Cho HH, Ball WP, Fairbrother DH. 2009. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure–property relationship. Langmuir 25: 97679776.
  • 61
    Kennedy AJ, Gunter JC, Chappell MA, Goss JD, Hull MS, Kirgan RA, Steevens JA. 2009. Influence of nanotube preparation in aquatic bioassays. Environ Toxicol Chem 28: 19301938.
  • 62
    Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J. 2009. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with functionalization. Environ Pollut 157: 11521156.
  • 63
    Lovern SB, Strickler JR, Klaper R. 2007. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41: 44654470.
  • 64
    Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161: 135142.
  • 65
    Shen MW, Wang SH, Shi XY, Chen XS, Huang QG, Petersen EJ, Pinto RA, Baker JR, Weber WJ Jr. 2009. Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: Synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113: 31503156.
  • 66
    Sayes CM, Marchione AA, Reed KL, Warheit DB. 2007. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7: 23992406.
  • 67
    Langley LA, Villanueva DE, Fairbrother DH. 2006. Quantification of surface oxides on carbonaceous materials. Chem Mater 18: 169178.
  • 68
    Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH. 2010. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396: 10031014.
  • 69
    Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Ma JD, Klaine SJ. 2010. The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29: 25112518.
  • 70
    Zhu SQ, Oberdorster E, Haasch ML. 2006. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62: S5S9.
  • 71
    Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS. 2007. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115: 10591065.
  • 72
    Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P. 2009. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157: 11341139.
  • 73
    Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105119.
  • 74
    Henry TB, Petersen EJ, Compton RN. 2011. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: A revision of previous reports. Curr Opin Biotechnol 22: 533537.
  • 75
    Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ Jr. 2011. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna . Environ Sci Technol 45: 11331138.
  • 76
    Chen KL, Elimelech M. 2006. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22: 1099411001.
  • 77
    Chen KL, Elimelech M. 2007. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Coll Interf Sci 309: 126134.
  • 78
    Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke P, Rao AM, Klaine SJ. 2007. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna . Environ Sci Technol 41: 30253029.
  • 79
    Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JVK. 2010. Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna . Environ Toxicol Chem 29: 10721078.
  • 80
    Milton K. 1969. The scattering of light, and other electromagnetic radiation. Academic, New York, New York, USA.
  • 81
    Organization for Economic Cooperation and Development. 1998. Daphnia magna reproduction test. Guideline 211. Paris, France.
  • 82
    Heller DA, Barone PW, Strano MS. 2005. Sonication-induced changes in chiral distribution: A complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon 43: 651653.
  • 83
    Taurozzi JS, Hackley VA, Wiesner MR. 2010. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—Issues and recommendations. Nanotoxicology, DOI: 10.3109/17435390.2010.528846.
  • 84
    Li ZF, Luo GH, Zhou WP, Wei F, Xiang R, Liu YP. 2006. The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology 17: 36923698.
  • 85
    Kam NWS, O'Connell M, Wisdom JA, Dai HJ. 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102: 1160011605.
  • 86
    Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. 2004. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126: 1563815639.
  • 87
    Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman B. 2006. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci U S A 103: 1888218886.
  • 88
    O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE. 2002. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297: 593596.
  • 89
    Hyung H, Fortner JD, Hughes JB, Kim JH. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41: 179184.
  • 90
    Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ Jr. 2009. Biological uptake and depuration of carbon nanotubes by Daphnia magna . Environ Sci Technol 43: 29692975.
  • 91
    van der Ploeg MJC, Baveco JM, van der Hout A, Bakker R, Rietjens I, van den Brink NW. 2011. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159: 198203.
  • 92
    Pakarinen K, Petersen EJ, Leppanen MT, Akkanen J, Kukkonen JVK. 2011. Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159: 37503756.
  • 93
    Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M. 2007. Visualizing the uptake of C60 to the cytoplasm and nucleaus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41: 30123017.
  • 94
    Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. 2007. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2: 713717.
  • 95
    Brandenberger C, Clift MJD, Vanhecke D, Muhlfeld C, Stone V, Gehr P, Rothen-Rutishauser B. 2010. Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see? Part Fibre Toxicol 7.
  • 96
    Petersen EJ, Huang QG, Weber WJ Jr. 2010. Relevance of octanol–water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environ Toxicol Chem 29: 11061112.
  • 97
    Scrivens WA, Tour JM, Creek KE, Pirisi L. 1994. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116: 45174518.
  • 98
    Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM. 1996. Tissue sites of uptake of 14C-labeled C60. Bioorganic Chem 24: 376385.
  • 99
    Zhang L, Petersen EJ, Huang QG. 2011. Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids: Peat. Environ Sci Technol 45: 13561362.
  • 100
    Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. 2010. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 158: 17481755.
  • 101
    Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR. 2010. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44: 11441151.
  • 102
    Oberdörster E, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML. 2006. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44: 11121120.
  • 103
    Tao XJ, Fortner JD, Zhang B, He YH, Chen YS, Hughes JB. 2009. Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77: 14821487.
  • 104
    Xia XR, Monteiro-Riviere NA, Riviere JE. 2006. Trace analysis of fullerenes in biological samples by simplified liquid–liquid extraction and high-performance liquid chromatography. J Chromat A 1129: 216222.
  • 105
    Isaacson CW, Usenko CY, Tanguay RL, Field JA. 2007. Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79: 90919097.
  • 106
    Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5: 11281132.
  • 107
    Isaacson CW, Kleber M, Field JA. 2009. Quantitative analysis of fullerene nanomaterials in environmental systems: A critical review. Environ Sci Technol 43: 64636474.
  • 108
    Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L. 2008. Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis . Aquat Toxicol 87: 127137.
  • 109
    Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB. 2007. Single-walled carbon nanotubes in the intact organism: Near-IR imaging and biocompatibility studies in Drosophila . Nano Lett 7: 26502654.
  • 110
    Sobek A, Bucheli TD. 2009. Testing the resistance of single- and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Environ Pollut 157: 10651071.
  • 111
    Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM. 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39: 68816895.
  • 112
    Cheng JP, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26: 708716.
  • 113
    Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21: 17261732.
  • 114
    Worle-Knirsch JM, Pulskamp K, Krug HF. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6: 12611268.
  • 115
    Lin MH, Hsu TS, Yang PM, Tsai MY, Perng TP, Lin LY. 2009. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer. Int J Rad Biol 85: 214226.
  • 116
    Hou WC, Jafvert CT. 2009. Photochemical transformation of aqueous C60 clusters in sunlight. Environ Sci Technol 43: 362367.
  • 117
    Hwang YS, Li QL. 2010. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environ Sci Technol 44: 30083013.
  • 118
    Chen CY, Jafvert CT. 2010. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water. Environ Sci Technol 44: 66746679.
  • 119
    Kennedy AJH, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA Jr. 2008. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27: 19321941.
  • 120
    Weber WJ Jr, McGinley PM, Katz LE. 1992. A distributed reactivity model for sorption by soils and sediments. Part 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26: 19551962.
  • 121
    Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A. 2007. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2: 108113.
  • 122
    Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F. 1995. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2: 385389.
  • 123
    Smith CJ, Shaw BJ, Handy RD. 2007. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82: 94109.
  • 124
    Mansfield E, Kar A, Hooker SA. 2010. Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem 396: 10711077.
  • 125
    Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC. 2005. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc 127: 34393448.
  • 126
    Heller DA, Barone PW, Swanson JP, Mayrhofer RM, Strano MS. 2004. Using Raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes. J Phys Chem B 108: 69056909.
  • 127
    Ziegler KJ, Gu ZN, Peng HQ, Flor EL, Hauge RH, Smalley RE. 2005. Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc 127: 15411547.
  • 128
    Fagan JA, Becker ML, Chun JH, Nie PT, Bauer BJ, Simpson JR, Hight-Walker A, Hobbie EK. 2008. Centrifugal length separation of carbon nanotubes. Langmuir 24: 1388013889.
  • 129
    Pease LF, Tsai DH, Fagan JA, Bauer BJ, Zangmeister RA, Tarlov MJ, Zachariah MR. 2009. Length distribution of single-walled carbon nanotubes in aqueous suspension measured by electrospray differential mobility analysis. Small 5: 28942901.
  • 130
    Wild E, Jones KC. 2009. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43: 52905294.
  • 131
    Cañas JE, Long MQ, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27: 19221931.