SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Wilkin RT. 2007. Monitored natural attenuation of inorganic contaminants in ground water, vol. 2. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium. EPA 600/R-07/140. U.S. Environmental Protection Agency, Washington, DC.
  • 2
    Agency for Toxic Substance and Disease Registry. 2008. Notice of the revised priority list of hazardous substances that will be the subject of toxicological profiles, vol. 73, no. 45. Federal Register, Atlanta, GA, USA.
  • 3
    U.S. Environmental Protection Agency. 2009. 2009 Edition of the drinking water standards and health advisories. EPA 822-R-09-11. U.S. Environmental Protection Agency, Washington, DC.
  • 4
    Zhang W-X. 2003. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5: 323332.
  • 5
    Tratnyek PG, Johnson RL. 2006. Nanotechnologies for environmental cleanup. Nano Today 1: 4448.
  • 6
    Shipley H, Yean S, Kan A, Tomson M. 2009. Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature. Environ Toxicol Chem 28: 509515.
  • 7
    Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG. 2007. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. J Environ Sci Technol 41: 51145119.
  • 8
    Chen Y-H, Li F-A. 2010. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci 347: 277281.
  • 9
    Hu J, Lo MC, Chen GH. 2004. Removal of Cr(IV) by magnetite nanoparticle. Water Sci Technol 50: 139146.
  • 10
    Ponder SM, Darab JG, Mallouk TE. 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. J Environ Sci Technol 34: 25642569.
  • 11
    Hu J, Chen G, Lo IMC. 2006. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132: 709715.
  • 12
    Hu J, Chen G, Lo IMC. 2005. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39: 45284536.
  • 13
    Engates KE. 2010. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents. PhD thesis. University of Texas at San Antonio, San Antonio, TX, USA.
  • 14
    Jawor A, Hoek E. 2010. Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration. Environ Sci Technol 44: 25702576.
  • 15
    Rodríguez JA, Garcia MF. 2007. Synthesis, Properties, and Applications of Oxide Nanomaterials. Wiley-InterScience, Hoboken, NJ, USA.
  • 16
    Engates K, Shipley H. 2010. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18: 386395.
  • 17
    Umpleby RJ, Baxter SC, Chen Y, Shah RN, Shimizu KD. 2001. Characterization of molecularly imprinted polymers with the Langmuir–Freundlich isotherm. Anal Chem 73: 45844591.
  • 18
    Sips R. 1950. On the structure of a catalyst surface II. J Chem Phys 18: 10241026.
  • 19
    McKenzie RM. 1980. The adsorption of lead and other heavy metal on oxides of manganese and iron. Aust J Soil Res 18: 6173.
  • 20
    Cornell R, Schwertmann U. 1996. The Iron Oxides. Wiley-VCH, Weinheim, Germany.
  • 21
    Swallow KC, Hume DN, Morel FMM. 1980. Sorption of copper and lead by hydrous ferric oxide. Environ Sci Technol 14: 13261331.
  • 22
    Christophi CA, Axe L. 2000. Competition of Cd, Cu, and Pb adsorption on goethite. J Environ Eng 126: 6674.
  • 23
    Sawyer CN, McCarty PL, Parkin GF, eds. 2003. Chemistry for Environmental Engineering and Science, 5th ed. McGraw-Hill, New York, NY, USA.
  • 24
    Violante A, Ricciardella M, Pigna M. 2003. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands. Water Air Soil Pollut 145: 289306.
  • 25
    Christl I, Kretzschmar R. 1999. Competitive sorption of copper and lead at the oxide-water interface: implication for surface site density. Geochim Cosmochim Acta 63: 29292938.
  • 26
    Benjamin MM, Lechie JO. 1981. Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 83: 410419.
  • 27
    Forbes EA, Posner AM, Quirk JP. 1976. The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on geothite. J Soil Sci 27: 154166.
  • 28
    Trivedi P, Axe L, Dyer J. 2001. Adsorption of metal ions onto goethite: Single-adsorbate and competitive systems. Colloids Surf A 191: 107121.
  • 29
    Gilbert B, Ono RK, Ching KA, Kim CS. 2009. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339: 285295.
  • 30
    Lu C, Chiu H, Liu C. 2006. Removal of zinc (II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Indust Eng Chem Res 45: 28502855.
  • 31
    Li Y, Di Z, Ding J, Wu D, Luan Z, Zhu Y. 2005. Adsorption thermodynamic, kinetic, and desorption studies of Pb2+ on carbon nanotubes. Water Res 39: 605609.