• 1
    Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metalnanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849856.
  • 2
    Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden JC. 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160166.
  • 3
    Handy RD, Owen R, Vadsami-Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315325.
  • 4
    Metcalfe C, Bennett E, Chappell M, Steevens J, Depledge M, Goss G., et al. 2009. SMARTEN: Strategic management and assessment of risks and toxicity of engineered nanomaterials. In Linkov I, Steevens J, eds, Nanomaterials: Risks and Benefits. NATO Science for Security and Peace Series–C: Environmental Security. Springer, Dordrecht, The Netherlands, pp 95109.
  • 5
    Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T. 2009. Nanostructured TiO2: Transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:80898104.
  • 6
    Neal AL. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362371.
  • 7
    Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:30663074.
  • 8
    Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:8396.
  • 9
    Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:41334139.
  • 10
    Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:92169222.
  • 11
    Blaser SA, Scheringer M, MacLeod M, Hungerbühler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contributions of nano-functionalized plastics and textiles. Sci Total Environ 390:396409.
  • 12
    Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z. 2009. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:18791886.
  • 13
    Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JC. 2009. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition. Environ Sci Technol 43:33223328.
  • 14
    Williams CJ, Jochem FJ. 2006. Ectoenzyme kinetics in Florida Bay: Implications for bacterial carbon source and nutrient status. Hydrobiologia 569:113127.
  • 15
    Wigginton NS, De Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R. 2010. Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:21632168.
  • 16
    Marie D, Partensky F, Jacquet S, Vaulot D. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microb 63:186193.
  • 17
    Vive Nano. 2009. Product Information Sheet (Certificate of Analysis): Carboxy-Functionalized Ag Nanoparticles Suspension, Stabilized by Polyacrylate Sodium. 13010L. Toronto, ON, Canada.
  • 18
    Hoppe HG. 1993. Use of fluorogenic model substrate for extracellular enzyme activity (EEA) measurement of bacteria. In Kemp PF, Sherr BF, Sherr EB, Cole JJ, eds, Handbookof Methods in Aquatic Microbial Ecology. Lewis, Boca Raton, FL, USA, pp 423430.
  • 19
    Martinez J, Azam F. 1993. Periplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: Implications for substrate processing in the sea. Mar Ecol Prog Ser 92:8997.
  • 20
    Hoppe HG. 1986. Relations between bacterial extracellular enzyme activities and heterotrophic substrate uptake in a brackish water environment. Actes de Colloques, Gerbam-Ifremer 3:119128.
  • 21
    Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem levels. Ecol Lett 10:11701181.
  • 22
    Kirchman DL. 2001. Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. In Paul JH, ed, Methods in Microbiology: Marine Microbiology, Vol 30. Academic, New York, NY, USA, pp 227237.
  • 23
    Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA. 2010. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:11591171.
  • 24
    Lyon DY, Thill A, Rose J, Alvarez PJJ. 2007. Ecotoxicological impacts of nanomaterials. In Wiesner MR, Bottero JY, eds, Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw-Hill, New York, NY, USA, pp 445480.
  • 25
    Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967976.
  • 26
    Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. 2003. Mode of bactericidal action of sliver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:42784281.
  • 27
    Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177182.
  • 28
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95101.
  • 29
    Allen HJ, Imellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN. 2010. Effects of filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:27422750.
  • 30
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:23462353.
  • 31
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:18251851.
  • 32
    Cho KH, Park JE, Osaka T, Park SG. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956960.
  • 33
    Bradford A, Handy RD, Readman JW, Atfield A, Mühling M. 2009. Impact of silver nanoparticle on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:45304536.
  • 34
    Fabrega J, Fawcett SR, Renshaw JC, Lead JR. 2009. Silver nanoparticle impact on bacterial growth: Effects of pH, concentration, and organic matter. Environ Sci Technol 43:72857290.
  • 35
    Sillanpää M, Orama M, Jaakko R, Oikari A. 2001. The importance of ligand speciation in environmental research: a case study. Sci Total Environ 267:2331.
  • 36
    Tso CP, Zhung CM, Shih YH, Tseng YM, Wu SC, Doon RA. 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127133.
  • 37
    Buttle J. 2009. The Kawartha Lakes. In Adams P, Taylor C, eds, Peterborough and the Kawarthas, 3rd ed. Heritage, Peterborough, ON, Canada, pp 96118.