SEARCH

SEARCH BY CITATION

References

  • 1
    The Royal Society and The Royal Academy of Engineering. 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. London, UK.
  • 2
    Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88: 412419.
  • 3
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19: 975983.
  • 4
    Markarian J. 2002. Antimicrobial plastics additives: Trends and latest developments in North America. Plastics, Additives and Compounding 4: 1821.
  • 5
    Rundle RL. 2006. This war against germs has a silver lining. The Wall Street Journal, June 6, p D1.
  • 6
    Blaser SA, Schereinger M, Macleod M, Hungerbuehler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci Total Environ 390: 396409.
  • 7
    Davies PH, Goettl JP, Sinley JR. 1978. Toxicity of silver to rainbow trout (Salmo gairdneri). Water Res 12: 113117.
  • 8
    Bianchini A, Grosell M, Gregory SM, Wood CM. 2002. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ Sci Technol 36: 17631766.
  • 9
    Bianchini A, Wood CM. 2003. Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22: 13611367.
  • 10
    Ratte HT. 1999. Bioaccumulation and toxicity of silver compounds: A review. Environ Toxicol Chem 18: 89108.
  • 11
    Kumar R, Howdle S, Munstedt H. 2005. Polyamide/silver antimicrobials: Effect of filler types on the silver ion release. J Biomed Mater Res Part B Appl Biomater 75B: 311319.
  • 12
    Lee D, Cohen RE, Rubner MF. 2005. Antibacterial properties of Ag nanoparticle loaded multiplelayers and formation of magnetically directed antibacterial microparticles. Langmuir 21: 96519659.
  • 13
    Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. 2008. Toxicity of silver nanoparticles to chlamydomonas reinhardtii. Environ Sci Technol 42: 89598964.
  • 14
    Choi O, Clevenger TE, Deng B, Surampalli RYL, Ross J, Hu Z. 2009. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43: 18791886.
  • 15
    Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44: 21692175.
  • 16
    Allen HJ, Impellittert CA, Macke DA, Heckman JL, Ponyton HC, Lazorchak JM, Govindaswany S, Roose DL, Nanagouda MN. 2010. Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29: 19.
  • 17
    Kahru A, Duboutguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105119.
  • 18
    Organisation for Economic Co-operation and Development. 2000. Aquatic toxicity testing of difficult substance sand mixtures. Guideline 23. Paris, France.
  • 19
    Organisation for Economic Co-operation and Development. 2004. Guideline for testing of chemicals 202. Daphnia sp., Acute Immobilisation Test. Paris, France.
  • 20
    U.S. Environmental Protection Agency. 1985a. Methods for measuring acute toxicity of effluents to freshwater and marine organisms. EPA 600/4-85/013. Office of Research and Development,Washington, DC.
  • 21
    Kim J, Kim S, Lee S. 2011. Differenciation of the toxicities of silver nanoparticles and silver ions to the Japanese medeka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5: 208214.