The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter

Authors


ABSTRACT

The standard cone calorimeter according to ASTM E 1354 and ISO 5660 enables reaction-to-fire tests to be performed in ambient atmospheric conditions. A controlled-atmosphere chamber modifies the standard apparatus in a way that allows tests to be performed in nonambient conditions as well. The enclosed chamber is placed underneath the standard exhaust hood and does not have a closed connection to the hood. With this open arrangement, the exhaust gases are diluted by excess air drawn in from the laboratory surroundings. Heat-induced changes in the consequential dilution ratio affect the calculation of fire quantities and, when neglected, lead to deviations of up to 30% in heat release rate. The paper introduces a test protocol and equations to calculate the heat release rate taking dilution effects into account. A mathematical correction is shown that compensates for the dilution effects while avoiding extensive mechanical changes in the equipment. Copyright © 2013 John Wiley & Sons, Ltd.

Ancillary