SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Behzad Baghapour, Vahid Esfahanian, Mohammad Torabzadeh, Hossein Mahmoodi Darian, A discontinuous Galerkin method with block cyclic reduction solver for simulating compressible flows on GPUs, International Journal of Computer Mathematics, 2015, 92, 1, 110

    CrossRef

  2. 2
    Z.H. Ma, H. Wang, S.H. Pu, A parallel meshless dynamic cloud method on graphic processing units for unsteady compressible flows past moving boundaries, Computer Methods in Applied Mechanics and Engineering, 2015, 285, 146

    CrossRef

  3. 3
    Jesús Martínez-Frutos, Pedro J. Martínez-Castejón, David Herrero-Pérez, Fine-grained GPU implementation of assembly-free iterative solver for finite element problems, Computers & Structures, 2015, 157, 9

    CrossRef

  4. 4
    Yidong Xia, Jialin Lou, Hong Luo, Jack Edwards, Frank Mueller, OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows, International Journal for Numerical Methods in Fluids, 2015, 78, 3
  5. 5
    Charles R. Ferenbaugh, PENNANT: an unstructured mesh mini-app for advanced architecture research, Concurrency and Computation: Practice and Experience, 2015, 27, 10
  6. 6
    Y. Mellbin, H. Hallberg, M. Ristinmaa, Accelerating crystal plasticity simulations using GPU multiprocessors, International Journal for Numerical Methods in Engineering, 2014, 100, 2
  7. 7
    Yue Wang, Ali Malkawi, Annual hourly CFD simulation: New approach—An efficient scheduling algorithm for fast iteration convergence, Building Simulation, 2014, 7, 4, 401

    CrossRef

  8. 8
    Felix Rubio, Mauricio Hanzich, Albert Farrés, Josep de la Puente, José María Cela, Finite-difference staggered grids in GPUs for anisotropic elastic wave propagation simulation, Computers & Geosciences, 2014, 70, 181

    CrossRef

  9. 9
    Z.H. Ma, H. Wang, S.H. Pu, GPU computing of compressible flow problems by a meshless method with space-filling curves, Journal of Computational Physics, 2014, 263, 113

    CrossRef

  10. 10
    Lipeng Yang, Shuai Li, Aimin Hao, Hong Qin, Hybrid Particle-grid Modeling for Multi-scale Droplet/Spray Simulation, Computer Graphics Forum, 2014, 33, 7
  11. 11
    Rainald Löhner, Fernando Camelli, Joseph D. Baum, Fumiya Togashi, Orlando Soto, On mesh-particle techniques, Computational Particle Mechanics, 2014, 1, 2, 199

    CrossRef

  12. 12
    Kyle E. Niemeyer, Chih-Jen Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, The Journal of Supercomputing, 2014, 67, 2, 528

    CrossRef

  13. 13
    Charles R. Ferenbaugh, A comparison of GPU strategies for unstructured mesh physics, Concurrency and Computation: Practice and Experience, 2013, 25, 11
  14. 14
    Mario A. Storti, Rodrigo R. Paz, Lisandro D. Dalcin, Santiago D. Costarelli, Sergio R. Idelsohn, A FFT preconditioning technique for the solution of incompressible flow on GPUs, Computers & Fluids, 2013, 74, 44

    CrossRef

  15. 15
    Xing He, Euntaek Lee, Lucas Wilcox, Ramakanth Munipalli, Laurent Pilon, A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications, Numerical Heat Transfer, Part B: Fundamentals, 2013, 63, 6, 457

    CrossRef

  16. 16
    R. Rossi, F. Mossaiby, S.R. Idelsohn, A portable OpenCL-based unstructured edge-based finite element Navier–Stokes solver on graphics hardware, Computers & Fluids, 2013, 81, 134

    CrossRef

  17. 17
    Jie Shen, Jianbin Fang, Henk Sips, Ana Lucia Varbanescu, An application-centric evaluation of OpenCL on multi-core CPUs, Parallel Computing, 2013, 39, 12, 834

    CrossRef

  18. 18
    M.B. Giles, G.R. Mudalige, B. Spencer, C. Bertolli, I. Reguly, Designing OP2 for GPU architectures, Journal of Parallel and Distributed Computing, 2013, 73, 11, 1451

    CrossRef

  19. 19
    G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, S. J. Sherwin, Finite element assembly strategies on multi-core and many-core architectures, International Journal for Numerical Methods in Fluids, 2013, 71, 1
  20. 20
    A. Dziekonski, P. Sypek, A. Lamecki, M. Mrozowski, Generation of large finite-element matrices on multiple graphics processors, International Journal for Numerical Methods in Engineering, 2013, 94, 2
  21. 21
    Rainald Löhner, Joseph D. Baum, Handling tens of thousands of cores with industrial/legacy codes: Approaches, implementation and timings, Computers & Fluids, 2013, 85, 53

    CrossRef

  22. 22
    Jacob Waltz, Performance of a three-dimensional unstructured mesh compressible flow solver on NVIDIA Fermi-class graphics processing unit hardware, International Journal for Numerical Methods in Fluids, 2013, 72, 2
  23. 23
    Mickeal Verschoor, Andrei C. Jalba, Analysis and performance estimation of the Conjugate Gradient method on multiple GPUs, Parallel Computing, 2012, 38, 10-11, 552

    CrossRef

  24. 24
    F. Mossaiby, R. Rossi, P. Dadvand, S. Idelsohn, OpenCL-based implementation of an unstructured edge-based finite element convection-diffusion solver on graphics hardware, International Journal for Numerical Methods in Engineering, 2012, 89, 13
  25. 25
    T. Miki, X. Wang, T. Aoki, Y. Imai, T. Ishikawa, K. Takase, T. Yamaguchi, Patient-specific modelling of pulmonary airflow using GPU cluster for the application in medical practice, Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 7, 771

    CrossRef

  26. 26
    Andrew Corrigan, Rainald Löhner, Semi-automatic porting of a large-scale CFD code to multi-graphics processing unit clusters, International Journal for Numerical Methods in Fluids, 2012, 69, 11