SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Alessandro Reali, Hector Gomez, An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates, Computer Methods in Applied Mechanics and Engineering, 2015, 284, 623

    CrossRef

  2. 2
    Peter Nørtoft, Jens Gravesen, Morten Willatzen, Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts, Computer Methods in Applied Mechanics and Engineering, 2015, 284, 1098

    CrossRef

  3. 3
    A.M.A. Côrtes, A.L.G.A. Coutinho, L. Dalcin, V.M. Calo, Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system, Journal of Computational Science, 2015,

    CrossRef

  4. 4
    T. Rüberg, F. Cirak, A fixed-grid b-spline finite element technique for fluid–structure interaction, International Journal for Numerical Methods in Fluids, 2014, 74, 9
  5. 5
    Hector Gomez, Alessandro Reali, Giancarlo Sangalli, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, Journal of Computational Physics, 2014, 262, 153

    CrossRef

  6. 6
    A. Buffa, G. Sangalli, R. Vázquez, Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, Journal of Computational Physics, 2014, 257, 1291

    CrossRef

  7. 7
    L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numerica, 2014, 23, 157

    CrossRef

  8. 8
    Luca Heltai, Marino Arroyo, Antonio DeSimone, Nonsingular isogeometric boundary element method for Stokes flows in 3D, Computer Methods in Applied Mechanics and Engineering, 2014, 268, 514

    CrossRef

  9. 9
    L. BEIRÃO DA VEIGA, A. BUFFA, G. SANGALLI, R. VÁZQUEZ, ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES, Mathematical Models and Methods in Applied Sciences, 2013, 23, 11, 1979

    CrossRef

  10. 10
    JOHN A. EVANS, THOMAS J. R. HUGHES, ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY–STOKES–BRINKMAN EQUATIONS, Mathematical Models and Methods in Applied Sciences, 2013, 23, 04, 671

    CrossRef

  11. 11
    JOHN A. EVANS, THOMAS J. R. HUGHES, ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS, Mathematical Models and Methods in Applied Sciences, 2013, 23, 08, 1421

    CrossRef

  12. 12
    Faisal Irzal, Joris J. C. Remmers, Clemens V. Verhoosel, René Borst, Isogeometric finite element analysis of poroelasticity, International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 12
  13. 13
    Peter Nørtoft, Jens Gravesen, Isogeometric shape optimization in fluid mechanics, Structural and Multidisciplinary Optimization, 2013, 48, 5, 909

    CrossRef

  14. 14
    Jasper Kreeft, Marc Gerritsma, Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution, Journal of Computational Physics, 2013, 240, 284

    CrossRef

  15. 15
    Byong-Ug Park, Yu-Deok Seo, Ole Sigmund, Sung-Kie Youn, Shape optimization of the stokes flow problem based on isogeometric analysis, Structural and Multidisciplinary Optimization, 2013, 48, 5, 965

    CrossRef

  16. 16
    Andrea Bressan, Some properties of LR-splines, Computer Aided Geometric Design, 2013, 30, 8, 778

    CrossRef

  17. 17
    Ch. Heinrich, B. Simeon, St. Boschert, A finite volume method on NURBS geometries and its application in isogeometric fluid–structure interaction, Mathematics and Computers in Simulation, 2012, 82, 9, 1645

    CrossRef

  18. 18
    F. Auricchio, F. Calabrò, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 2012, 249-252, 15

    CrossRef

  19. 19
    L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-Suitable T-splines are Dual-Compatible, Computer Methods in Applied Mechanics and Engineering, 2012, 249-252, 42

    CrossRef

  20. 20
    L. Beirão da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 2012, 209-212, 1

    CrossRef

  21. 21
    Akira MARUOKA, Takahiro YAMADA, Characteristic Galerkin Scheme Based on Mixed B-spline Approximations for Incompressible Flows, Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), 2012, 68, 2, I_149

    CrossRef

  22. 22
    A. Buffa, D. Cho, M. Kumar, Characterization of T-splines with reduced continuity order on T-meshes, Computer Methods in Applied Mechanics and Engineering, 2012, 201-204, 112

    CrossRef

  23. 23
    L. Beira͂o da Veiga, D. Cho, L. F. Pavarino, S. Scacchi, Overlapping Schwarz Methods for Isogeometric Analysis, SIAM Journal on Numerical Analysis, 2012, 50, 3, 1394

    CrossRef

  24. 24
    T. Rüberg, F. Cirak, Subdivision-stabilised immersed b-spline finite elements for moving boundary flows, Computer Methods in Applied Mechanics and Engineering, 2012, 209-212, 266

    CrossRef

  25. 25
    Peter Nørtoft Nielsen, Allan Roulund Gersborg, Jens Gravesen, Niels Leergaard Pedersen, Discretizations in isogeometric analysis of Navier–Stokes flow, Computer Methods in Applied Mechanics and Engineering, 2011, 200, 45-46, 3242

    CrossRef

  26. 26
    C. de Falco, A. Reali, R. Vázquez, GeoPDEs: A research tool for Isogeometric Analysis of PDEs, Advances in Engineering Software, 2011, 42, 12, 1020

    CrossRef

  27. 27
    A. Buffa, J. Rivas, G. Sangalli, R. Vázquez, Isogeometric Discrete Differential Forms in Three Dimensions, SIAM Journal on Numerical Analysis, 2011, 49, 2, 818

    CrossRef