SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Walford CA. Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs. Technical Report SAND2006-1100, Sandia National Laboratories, 2006.
  • 2
    Echavarria E, Hahn B, van Bussel GJW. Reliability of wind turbine technology through time. Journal of Solar Energy Engineering 2008; 130:8.
  • 3
    Bischoff M, Wall WA, Bletzinger K-U, Ramm E. Models and finite elements for thin-walled structures. In Encyclopedia of Computational Mechanics, Volume 2: Solids, Structures and Coupled Problems, SteinE, de BorstR, HughesTJR (eds), Chapter 3. Wiley: New York, 2004.
  • 4
    Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 2005; 194:41354195.
  • 5
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering 2006; 195:52575297.
  • 6
    Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G. Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences 2006; 16:10311090.
  • 7
    Cottrell JA, Hughes TJR, Reali A. Studies of refinement and continuity in isogeometric structural analysis. Computer Methods in Applied Mechanics and Engineering 2007; 196:41604183.
  • 8
    Wall WA, Frenzel MA, Cyron C. Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering 2008; 197:29762988.
  • 9
    Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley: Chichester, 2009.
  • 10
    Evans JA, Bazilevs Y, Babus̆ka I, Hughes TJR. N-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering 2009; 198:17261741.
  • 11
    Dörfel MR, Jüttler B, Simeon B. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering 2010; 199:264275.
  • 12
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering 2010; 199:264275.
  • 13
    Auricchio F, Beirão da Veiga L, Lovadina C, Reali A. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Computer Methods in Applied Mechanics and Engineering 2010; 199:314323.
  • 14
    Wang W, Zhang Y. Wavelets-based NURBS simplification and fairing. Computer Methods in Applied Mechanics and Engineering 2010; 199:290300.
  • 15
    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF. Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 2010; 199:334356.
  • 16
    Srinivasan V, Radhakrishnan S, Subbarayan G. Coordinated synthesis of hierarchical engineering systems. Computer Methods in Applied Mechanics and Engineering 2010; 199:392404.
  • 17
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering 2007; 197:173201.
  • 18
    Bazilevs Y, Michler C, Calo VM, Hughes TJR. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering 2007; 196:48534862.
  • 19
    Bazilevs Y, Michler C, Calo VM, Hughes TJR. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Computer Methods in Applied Mechanics and Engineering 2010; 199:780790. DOI: 10.1016/j.cma.2008.11.020.
  • 20
    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S. The role of continuity in residual-based variational multiscale modeling of turbulence. Computational Mechanics 2008; 41:371378.
  • 21
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. Improving stability of multiscale formulations of fluid flow at small time steps. Computer Methods in Applied Mechanics and Engineering 2010; 199:828840.
  • 22
    Bazilevs Y, Akkerman I. Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. Journal of Computational Physics 2010; 229:34023414.
  • 23
    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR. Bbar and Fbar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Computer Methods in Applied Mechanics and Engineering 2008; 197:27322762.
  • 24
    Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR. Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering 2010; 199:357373.
  • 25
    Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T. A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. International Journal of Numerical Methods in Engineering 2010; 83:765785. DOI: 10.1002/nme.2864.
  • 26
    Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR. Isogeometric shell analysis: the Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering 2010; 199:276289.
  • 27
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering 2009; 198:39023914.
  • 28
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering 2010; 199:24032416. DOI: 10.1016/j.cma.2010.03.029.
  • 29
    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 2007; 196:29432959.
  • 30
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38:310322.
  • 31
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Computational Mechanics 2008; 43:337.
  • 32
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 2008; 39:31723178. DOI: 10.1161/STROKEAHA.107.503698.
  • 33
    Bazilevs Y, Hughes TJR. NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics 2008; 43:143150.
  • 34
    Tezduyar TE. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics 1992; 28:144.
  • 35
    Tezduyar TE, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering 1992; 94(3):339351.
  • 36
    Tezduyar TE, Behr M, Mittal S, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering 1992; 94(3):353371.
  • 37
    Tezduyar TE. Computation of moving boundaries and interfaces and stabilization parameters. International Journal of Numerical Methods in Fluids 2003; 43:555575.
  • 38
    Tezduyar TE, Sathe S. Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. International Journal for Numerical Methods in Fluids 2007; 54:855900.
  • 39
    Mittal S, Tezduyar TE. A finite element study of incompressible flows past oscillating cylinders and aerofoils. International Journal for Numerical Methods in Fluids 1992; 15:10731118.
  • 40
    Mittal S, Tezduyar TE. Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. International Journal for Numerical Methods in Fluids 1995; 21:933953.
  • 41
    Kalro V, Tezduyar TE. A parallel 3D computational method for fluid–structure interactions in parachute systems. Computer Methods in Applied Mechanics and Engineering 2000; 190:321332.
  • 42
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M. Parachute fluid–structure interactions: 3-D computation. Computer Methods in Applied Mechanics and Engineering 2000; 190:373386.
  • 43
    Tezduyar T, Osawa Y. Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Computer Methods in Applied Mechanics and Engineering 2001; 191:717726.
  • 44
    Tezduyar TE, Sathe S, Keedy R, Stein K. Space–time finite element techniques for computation of fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering 2006; 195:20022027.
  • 45
    Tezduyar TE, Sathe S, Stein K. Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Computer Methods in Applied Mechanics and Engineering 2006; 195:57435753.
  • 46
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M. Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. International Journal for Numerical Methods in Fluids 2007; 54:901922.
  • 47
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57:601629.
  • 48
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Computational Mechanics 2008; 43:3949.
  • 49
    Tezduyar TE, Schwaab M, Sathe S. Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Computer Methods in Applied Mechanics and Engineering 2009; 198:35243533.
  • 50
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J. Multiscale sequentially-coupled arterial FSI technique. Computational Mechanics 2010; 46:1729.
  • 51
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J. Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids 2009. DOI: 10.1002/d.2221, Published online.
  • 52
    Takizawa K, Christopher J, Tezduyar TE, Sathe S. Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. International Journal for Numerical Methods in Biomedical Engineering 2010; 26:101116.
  • 53
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE. Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Computational Mechanics 2010; 46:3141.
  • 54
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE. Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. International Journal for Numerical Methods in Fluids 2010. DOI: 10.1002/d.2348.
  • 55
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE. Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. International Journal for Numerical Methods in Fluids 2010. DOI: 10.1002/d.2360.
  • 56
    Takizawa K, Wright S, Moorman C, Tezduyar TE. Fluid–structure interaction modeling of parachute clusters. International Journal for Numerical Methods in Fluids 2010. DOI: 10.1002/d.2359.
  • 57
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J. Fluid–structure interaction modeling of ringsail parachutes. Computational Mechanics 2008; 43:133142.
  • 58
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M. Flow simulation and high performance computing. Computational Mechanics 1996; 18:397412.
  • 59
    Behr M, Tezduyar T. The shear-slip mesh update method. Computer Methods in Applied Mechanics and Engineering 1999; 174:261274.
  • 60
    Behr M, Tezduyar T. Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Computer Methods in Applied Mechanics and Engineering 2001; 190:31893200.
  • 61
    Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, 2009.
  • 62
    Hau E. Wind Turbines: Fundamentals, Technologies, Application, Economics (2nd edn). Springer: Berlin, 2006.
  • 63
    Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL. DOWEC 6 MW pre-design: Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS. Technical Report DOWEC-F1W2-HJK-01-046/9, 2003.
  • 64
    Jonkman JM, Buhl Jr ML. FAST user's guide. Technical Report NREL/EL-500-38230, National Renewable Energy Laboratory, Golden, CO, 2005.
  • 65
    Hughes TJR. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering 1995; 127:387401.
  • 66
    Hughes TJR, Feijóo G, Mazzei L, Quincy JB. The variational multiscale method—a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering 1998; 166:324.
  • 67
    Brooks AN, Hughes TJR. Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering 1982; 32:199259.
  • 68
    Hughes TJR, Tezduyar TE. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering 1984; 45:217284.
  • 69
    Tezduyar TE, Park YJ. Discontinuity capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Computer Methods in Applied Mechanics and Engineering 1986; 59:307325.
  • 70
    Tezduyar TE, Mittal S, Ray SE, Shih R. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Computer Methods in Applied Mechanics and Engineering 1992; 95:221242.
  • 71
    Franca LP, Frey S. Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering 1992; 99:209233.
  • 72
    Tezduyar TE, Osawa Y. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering 2000; 190:411430.
  • 73
    Hughes TJR, Scovazzi G, Franca LP. Multiscale and stabilized methods. In Encyclopedia of Computational Mechanics, Volume 3: Computational Fluid Dynamics, SteinE, de BorstR, HughesTJR (eds), Chapter 2. Wiley: New York, 2004.
  • 74
    Catabriga L, Coutinho ALGA, Tezduyar TE. Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Computational Mechanics 2006; 38:334343.
  • 75
    Hughes TJR, Sangalli G. Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and stabilized methods. SIAM Journal on Numerical Analysis 2007; 45:539557.
  • 76
    Bazilevs Y, Hughes TJR. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids 2007; 36:1226.
  • 77
    Calderer R, Masud A. A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Computational Mechanics 2010; 46:185197.
  • 78
    Lewis G, Swinney H. Velocity structure functions, scaling and transitions in high-Reynolds-number Couette–Taylor flow. Physics Review E 1999; 59:54575467.
  • 79
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S. Parallel finite element computation of 3D flows. Computer 1993; 26:2736.
  • 80
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S. Massively parallel finite element simulation of compressible and incompressible flows. Computer Methods in Applied Mechanics and Engineering 1994; 119:157177.
  • 81
    Bilson M, Bremhorst K. Direct numerical simulation of turbulent Taylor–Couette flow. Journal of Fluid Mechanics 2007; 579:227270.
  • 82
    Pirro D, Quadrio M. Direct numerical simulation of turbulent Taylor–Couette flow. European Journal of Mechanics—B/Fluids 2007; 27:552566.
  • 83
    Dong S. Turbulent flow between counter-rotating concentric cylinders: a DNS study. Journal of Fluid Mechanics 2008; 615:371399.
  • 84
    Pope SB. Large-eddy simulation using projection onto local basis functions. In Fluid Mechanics and the Environment: Dynamical Approaches, LumleyJL (ed.). Springer: Berlin, 2000.
  • 85
    Speziale CG, Younis BA, Rubinstein R, Zhou Y. On consistency conditions for rotating turbulent flows. Physics of Fluids 1998; 10:21082110.
  • 86
    Dong S. DNS of turbulent Taylor–Couette flow. Journal of Fluid Mechanics 2007; 587:373393.
  • 87
    Kirby RM, Karniadakis GE. Spectral element and hp methods. In Encyclopedia of Computational Mechanics, Volume 3: Computational Fluid Dynamics, SteinE, de BorstR, HughesTJR (eds). Wiley: New York, 2004.
  • 88
    Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics 1995; 285:6994.
  • 89
    Jansen KE, Whiting CH, Hulbert GM. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering 1999; 190:305319.
  • 90
    Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics 1993; 60:371375.
  • 91
    Takizawa K, Moorman C, Wright S, Tezduyar TE. Computer modeling and analysis of the Orion spacecraft parachutes. In Fluid–Structure Interaction—Modelling, Simulation, Optimization, Part II, BungartzH-J, SchaferM (eds). Lecture Notes in Computational Science and Engineering. Springer: Berlin, 2010.
  • 92
    Spera DA. Introduction to modern wind turbines. In Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, SperaDA (ed.). ASME Press: New York, 1994; 4772.
  • 93
    Texas Advanced Computing Center (TACC). Available from: http://www.tacc.utexas.edu.
  • 94
    Saad Y, Schultz M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1986; 7:856869.
  • 95
    Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 1998; 20:359392.
  • 96
    Rispoli F, Corsini A, Tezduyar TE. Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Computers and Fluids 2007; 36:121126.
  • 97
    Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review 1963; 91(3):99165.
  • 98
    Tezduyar TE, Ramakrishnan S, Sathe S. Stabilized formulations for incompressible flows with thermal coupling. International Journal for Numerical Methods in Fluids 2008; 57:11891209.