Advertisement

Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows

Authors

  • B. Seny,

    Corresponding author
    • Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
    Search for more papers by this author
  • J. Lambrechts,

    1. Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
    Search for more papers by this author
  • R. Comblen,

    1. Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
    Search for more papers by this author
  • V. Legat,

    1. Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
    Search for more papers by this author
  • J.-F. Remacle

    1. Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
    Search for more papers by this author

B. Seny, Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium

E-mail: bruno.seny@uclouvain.be

SUMMARY

This paper presents multirate explicit time-stepping schemes for solving partial differential equations with discontinuous Galerkin elements in the framework of Large-scale marine flows. It addresses the variability of the local stable time steps by gathering the mesh elements in appropriate groups. The real challenge is to develop methods exhibiting mass conservation and consistency. Two multirate approaches, based on standard explicit Runge–Kutta methods, are analyzed. They are well suited and optimized for the discontinuous Galerkin framework. The significant speedups observed for the hydrodynamic application of the Great Barrier Reef confirm the theoretical expectations. Copyright © 2012 John Wiley & Sons, Ltd.

Ancillary