SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Gottlieb S, Orszag A.Numerical Analysis of Spectral Methods: Theory and Applications. SIAM: Philadelphia, 1977.
  • 2
    Godunov S.A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheski Sbornik 1959; 47:271306.
  • 3
    Harten A, Engquist B, Osher S, Chakravarthy S.Uniformly high order essentially non-oscillatory schemes III. Journal of Computational Physics 1987; 71:231303.
  • 4
    Lele S.Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992; 103:1642.
  • 5
    Liu X, Osher S, Chan T.Weighted essentially non-oscillatory schemes. Journal of Computational Physics 1994; 115:200212.
  • 6
    Tam C, Webb J.Dispersion-relationpreserving finite difference schemes for computational acoustics. Journal of Computational Physics 1993; 107:262281.
  • 7
    Leer BV.Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. Journal of Computational Physics 1979; 32:101136.
  • 8
    Visbal M, Gaitonde D.On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. Journal of Computational Physics 2002; 181(1):155185.
  • 9
    Abgrall R, Larat A, Ricchiuto M.Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. Journal of Computational Physics 2011; 230(11):41034136.
  • 10
    Barth T, Frederickson P.High-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90-0013, American Institute of Aeronautics and Astronautics, 1990.
  • 11
    Cockburn B, Shu CW.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Mathematics of Computation 1989; 52:411435.
  • 12
    Bassi F, Rebay S.A high–order discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131:267279.
  • 13
    Hughes T.Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations. International Journal of Numerical Methods in Fluids 1987; 7:12611275.
  • 14
    Huynh H.A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007-4079, American Institute of Aeronautics and Astronautics, 2007.
  • 15
    Kopriva D, Kolias J.A conservative staggered-grid Chebyshev multidomain method for compressible flows. Journal of Computational Physics 1996; 125:244261.
  • 16
    Liu Y, Vinokur M, Wang Z.Discontinuous spectral difference method for conservation laws on unstructured grids. Journal of Computational Physics 2006; 216:780801.
  • 17
    Patera A.A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics 1984; 54:468488.
  • 18
    Reed W, Hill T.Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
  • 19
    Ekaterinaris J.High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences 2005; 41:192300.
  • 20
    Wang Z.High–order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences 2007; 43:141.
  • 21
    Vassberg J.Expectations for computational fluid dynamics. Journal of Computational Fluid Dynamics 2005; 19(8):549558.
  • 22
    Wagner C, Hüttl T, Sagaut P.Large-eddy Simulation for Acoustics. Cambridge University Press: Cambridge, United Kingdom, 2007.
  • 23
    Kroll N, Bieler H, Deconinck H, Couaillier V, van der Ven H, Sorensen K.ADIGMA – A European Initiative on the Development of Adaptive Higher-order Variational Methods for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 113. Springer: Berlin, Heidelberg, 2010.
  • 24
    DLR Germany. TauBench - IPACS. Available from: http://www.ipacs-benchmark.org [Accessed on 12/24/2012].
  • 25
    Chiocchia G.Exact solutions to transonic and supersonic flows. AGARD Report AR-211, Advanced Guidance for Alliance Research and Development, part of NATO Science & Technology Organization, 1985.
  • 26
    Landau L, Lifshitz E.Fluid mechanics, 2nd ed., Course in Theoretical Physics. Elsevier: Amsterdam, the Netherlands, 1987.
  • 27
    Cook P, McDonald M, Firmin M.Aerofoil RAE 2822 – pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment. AGARD Report AR-138, Advanced Guidance for Alliance Research and Development, part of NATO Science & Technology Organization, 1979.
  • 28
    Riley A, Lowson M.Development of a three dimensional free shear layer. Journal of Fluid Mechanics 1998; 369:4989.
  • 29
    Klaij C, van der Vegt J, van der Ven H.Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. Journal of Computational Physics 2006; 217:589611.
  • 30
    Leicht T, Hartmann R.Error estimation and anisotropic mesh refinement for 3D laminar aerodynamic flow simulations. Journal of Computational Physics 2010; 29(19):73447360.
  • 31
    Morrison JH, Hemsch MJ.Statistical analysis of CFD solutions from the third AIAA drag prediction workshop. AIAA Paper 2007-254, American Institute of Aeronautics and Astronautics, 2007.
  • 32
    Selig M, Guglielmo J, Broeren A, Giguère P.Summary of Low-speed Airfoil Data Vol. 1. SoarTech Publications: Virginia Beach, Virginia, 1995.
  • 33
    Williamson J.Low-storage Runge-Kutta schemes. Journal of Computational Physics 1980; 35:4856.
  • 34
    van Rees WM, Leonard A, Pullin DI, Koumoutsakos P.A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics 2011; 230(8):27942805. DOI: 10.1016/j.jcp.2010.11.031.
  • 35
    Kim J, Lee D.Optimized compact finite difference schemes with maximum resolution. AIAA Journal 1996; 34(5):887893.
  • 36
    Ramboer J, Broeckhoven T, Smirnov S, Lacor C.Optimization of time integration schemes coupled to spatial discretization for use in CAA applications. Journal of Computational Physics 2006; 213(2):777802.
  • 37
    Hu F, Hussani M, Manthey J.Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics 1996; 124:177191.
  • 38
    Geuzaine C, Remacle JF.Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):13091331.
  • 39
    Fidkowski KJ, Darmofal DL.Review of output-based error estimation and mesh adaptation in computational fluid dynamics. American Institute of Aeronautics and Astronautics Journal 2011; 49(4):673694.