Get access

A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity

Authors

  • Enrique Ortega,

    Corresponding author
    • International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, España
    Search for more papers by this author
  • Eugenio Oñate,

    1. International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, España
    Search for more papers by this author
  • Sergio Idelsohn,

    1. International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, España
    Search for more papers by this author
    • Institucio Catalana de Recerca i Estudis Avancats (ICREA)
  • Roberto Flores

    1. International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, España
    Search for more papers by this author

Correspondence to: Enrique Ortega, International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, España.

E-mail: eortega@cimne.upc.edu

SUMMARY

A finite point method for solving compressible flow problems involving moving boundaries and adaptivity is presented. The numerical methodology is based on an upwind-biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form and integrated in time by means of a dual-time steeping technique. In order to exploit the meshless potential of the method, a domain deformation approach based on the spring network analogy is implemented, and h-adaptivity is also employed in the computations. Typical movable boundary problems in transonic flow regime are solved to assess the performance of the proposed technique. In addition, an application to a fluid–structure interaction problem involving static aeroelasticity illustrates the capability of the method to deal with practical engineering analyses. The computational cost and multi-core performance of the proposed technique is also discussed through the examples provided. Copyright © 2013 John Wiley & Sons, Ltd.

Ancillary